${ m Colle}_{{}^{25/09/25}}{ m S03}$

1 Démonstration

Démontrer la proposition suivante :

Proposition 1 – Propriété (caractérisation de la fonction réciproque)

Si $f:E\to F$ est une application, les deux propriétés suivantes sont équivalentes :

- 1. f est bijective de E sur F;
- **2.** Il existe une application $g: F \to E$ telle que $g \circ f = \mathrm{Id}_E$ et $f \circ g = \mathrm{Id}_F$.

De plus, si lune des conditions est vérifiée, la fonction g est unique et est appelée fonction réciproque de f, notée f^{-1} .

2 Exercices

2.1 Bijection réciproque

Soit E un ensemble, et A, B deux sous-ensembles de E. On considère l'application

$$f \mid \mathcal{P}(E) \longrightarrow \mathcal{P}(A) \times \mathcal{P}(B)$$
$$X \longmapsto (X \cap A, X \cap B)$$

- 1. Montrer que f est injective si et seulement si $A \cup B = E$.
- **2.** Montrer que f est surjective si et seulement si $A \cap B = \emptyset$.
- 3. Dans le cas où f est bijective, déterminer son application réciproque.

2.2 Divisibilité d'un polynôme de degré n

Soient n et p deux entiers naturels non nuls et x un entier relatif.

1. Montrer que les deux propositions suivantes sont équivalentes.

(i)
$$p \mid x^2 - x$$
,
 $y \mid x^2 - x$, $y \mid x^n - x$.

2. En déduire l'ensemble des entiers relatifs 0 tels que, pour tout $n \in \mathbb{N}^*$, l'entier $x^n - x$ est pair.

Colle S03

1 Démonstration

Démontrer la proposition suivante :

Proposition 1

Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ des applications.

- **1.** Si $g \circ f$ est injective, alors f est injective.
- **2.** Si $g \circ f$ est surjective, alors g est surjective.

2 Exercices

2.1 Bijection réciproque

Soit E et F deux ensembles, et f une application de E vers F. On considère les applications :

$$\phi \mid \mathcal{P}(E) \longrightarrow \mathcal{P}(F)$$

$$A \longmapsto f(A)$$

 et

$$\psi \mid \mathcal{P}(F) \longrightarrow \mathcal{P}(E)$$

$$B \longmapsto f^{-1}(B)$$

- 1. Montrer que les assertions suivantes sont équivalentes :
 - a) f est injective
 - **b)** ϕ est injective
 - c) ψ est surjective
- 2. Montrer que les assertions suivantes sont équivalentes :
 - a) f est surjective
 - **b)** ϕ est surjective
 - c) ψ est injective

2.2 Division euclidienne d'un polynôme

Pour tout entier $x \in \mathbb{N}^*$, nous posons :

$$p(x) = [x^2 + (x-1)^2]^2$$
.

Quel est le reste de la division euclidienne de p(x) par $4x^2$?