$\underset{\scriptscriptstyle{02/10/25}}{\mathbf{ColleS04}}$

1 Démonstration

Démontrer la proposition suivante :

Proposition 1

L'application

$$u \mid \mathcal{P}(E) \longrightarrow \mathcal{F}(E, \{0,1\})$$

$$A \longmapsto \mathbb{1}_A$$

est une bijection.

2 Exercices

2.1 Encore des applications

Soit E et F deux ensembles, et f une application de E vers F. On considère les applications :

$$\phi \mid \mathcal{P}(E) \longrightarrow \mathcal{P}(F)$$

$$A \longmapsto f(A)$$

 et

$$\psi \mid \mathcal{P}(F) \longrightarrow \mathcal{P}(E)$$

$$B \longmapsto f^{-1}(B)$$

- 1. Montrer que les assertions suivantes sont équivalentes :
 - a) f est injective
 - **b)** ϕ est injective
 - c) ψ est surjective
- 2. Montrer que les assertions suivantes sont équivalentes :
 - a) f est surjective
 - **b)** ϕ est surjective
 - c) ψ est injective

2.2 Familles indexées

Pour tout $h \in \mathbb{R}_+^*$, on pose $J_h =]-h,h[$. Montrer que :

$$\bigcap_{h \in \mathbb{R}_+^*} J_h = \{0\} \qquad \text{et} \qquad \bigcup_{k \in \mathbb{R}_+^*} J_h = \mathbb{R}.$$

${\color{red}\textbf{Colle}_{\tiny{02/10/25}}\textbf{S04}}$

1 Démonstration

Démontrer la proposition suivante puis les Lois de De Morgan :

Proposition 1 – Caractérisation de la fonction réciproque

Si $f: E \to F$ est une application, les deux propriétés suivantes sont équivalentes :

- 1. f est bijective de E sur F;
- **2.** Il existe une application $g: F \to E$ telle que $g \circ f = \mathrm{Id}_E$ et $f \circ g = \mathrm{Id}_F$.

De plus, si lune des conditions est vérifiée, la fonction g est unique et est appelée fonction réciproque de f, notée f^{-1} .

2 Exercices

2.1 Fonction caractéristique

Soit E un ensemble, A et B des sous-ensembles de E.

- 1. Rappeler les fonctions caractéristiques de \overline{A} , $A \cap B$, $A \cup B$ en fonction de $\mathbb{1}_A$ et $\mathbb{1}_B$.
- 2. Retrouver, à l'aide des fonctions indicatrices, que $A \cap B = A \cup B \iff A = B$.

2.2 Injection, surjection, bijection

Soit E un ensemble, et A, B deux sous-ensembles de E. On considère l'application

$$f \mid \mathcal{P}(E) \longrightarrow \mathcal{P}(A) \times \mathcal{P}(B)$$
$$X \longmapsto (X \cap A, X \cap B)$$

- 1. Montrer que f est injective si et seulement si $A \cup B = E$.
- **2.** Montrer que f est surjective si et seulement si $A \cap B = \emptyset$.
- 3. Dans le cas où f est bijective, déterminer son application réciproque.