${f Colle S05}$

1 Démonstration

Démontrer la proposition suivante :

Proposition 1 – Propriété

Étant donné une relation d'équivalence \mathscr{R} sur un ensemble E, ainsi que deux éléments x et y de E, les propriétés suivantes sont équivalentes :

$$(i) x \mathcal{R} y \qquad (ii) y \in \widetilde{x} \qquad (iii) \ \widetilde{x} = \widetilde{y}.$$

2 Exercices

2.1 Bornes supérieures et inférieures

1. Soit
$$A = \left\{ \frac{n}{n+1} \,\middle|\, n \in \mathbb{N}^* \right\}$$
.

- a) Montrer que A est majoré et minoré dans \mathbb{R} .
- b) Déterminer $\sup(A)$ et $\inf(A)$.

2. Soit
$$B = \left\{ (-1)^n + \frac{1}{n} \, \middle| \, n \in \mathbb{N}^*, n \ge 1 \right\}.$$

- a) Discuter les bornes supérieures et inférieures de B.
- b) Déterminer si B admet un maximum ou un minimum.

2.2 Bijection, congruences et relations

Soit $E = \mathbb{Z}$ et la fonction $f : \mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$ définie par $f(x) = \tilde{x}$.

- 1. Montrer que $x\mathcal{R}y \iff f(x) = f(y)$ définit une relation d'équivalence sur \mathbb{Z} .
- 2. Déterminer les classes d'équivalence et l'ensemble quotient $\mathbb{Z}/$.
- 3. Montrer que f induit une bijection entre $\mathbb{Z}/$ et $\mathbb{Z}/3\mathbb{Z}.$
- 4. Expliquer comment ce principe se généralise à tout entier $n \geq 2$.

Colle S05

1 Démonstration

Démontrer la proposition suivante :

Proposition 1

Soit A une partie non vide d'un ensemble E totalement ordonné pour la relation \leq . Pour qu'un élément S de E soit la borne supérieure de A dans E, il faut et il suffit que les deux conditions suivantes soient vérifiées :

- 1. $\forall a \in A, a \leq S$;
- **2.** $\forall b \in E : b \prec S \implies \exists a \in A : b \prec a$.

2 Exercices

2.1 Congruences et ensembles quotients

On considère la relation $x \equiv y \pmod{6}$ dans \mathbb{Z} .

- 1. Donner les classes d'équivalence.
- 2. Montrer que $\mathbb{Z}/6\mathbb{Z}$ est une partition de \mathbb{Z} .
- **3.** Soit $f: \mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$, $f(x) = \tilde{x}$. Montrer que f est surjective et que $\ker(f) = 6\mathbb{Z}$.
- 4. Interpréter ce résultat dans le cadre général des ensembles quotients.

2.2 Relations et exponentielle

Soient $E = \mathbb{R}$ et $F = \mathbb{R} \setminus \{0\}$. On définit :

$$f: E \to F, \quad f(x) = e^x.$$

- **1.** Montrer que f est bijective de \mathbb{R} sur $]0, +\infty[$.
- **2.** On définit sur F la relation $a\mathscr{R}b \iff \frac{a}{b} \in \mathbb{Q}$. Montrer que \mathscr{R} est une relation déquivalence.
- 3. Déterminer la relation $\mathscr S$ sur $\mathbb R$ telle que :

$$x\mathscr{S}y \iff f(x)\mathscr{R}f(y).$$

4. Montrer que $\mathscr S$ est aussi une relation déquivalence et décrire ses classes.