

Lycée Saint Augustin Classe de Terminale spécialité Mathématiques expertes 2025–2026 M. Berard

MATHÉMATIQUES CORRECTION DU DEVOIR MAISON N° 2

À rendre le Jeudi 9 Octobre 2025

Durée indicative : 8 heures Barème : 44 (58 ME) points

Raisonnements. Relations et structures. Arithmétique.

1 Raisonnements

Exercice 1 Équations (6 points)

1. Résoudre l'équation $x-1=\sqrt{x+1}$ d'inconnue x.

Cette équation est définie sur $D = [-1, +\infty[$. En élevant au carré, on a :

$$x - 1 = \sqrt{x+1} \implies (x-1)^2 = x+1$$

$$\implies x^2 - 2x + 1 = x+1$$

$$\implies x^2 - 3x = 0$$

$$\implies x(x-3) = 0.$$

Les solutions sont x = 0 et x = 3 mais il ne faut pas oublier de faire la synthèse comme on a raisonné par implication. Seul x = 3 convient donc $S = \{3\}$.

2. Résoudre l'équation $|x-1| \leq |2x|$.

On élève l'inégalité au carré, comme la fonction carrée est croissante sur \mathbb{R}_+ et que toutes les quantités sont positives :

$$|x-1| \leqslant |2x| \iff (x-1)^2 \leqslant (2x)^2$$

$$\iff x^2 - 2x + 1 \leqslant 4x^2$$

$$\iff 0 \leqslant 3x^2 + 2x - 1$$

x = -1 est racine évidente donc en factorisant :

$$3x^2 + 2x - 1 = (x+1)(3x-1)$$

et ce polynôme est positif à l'extérieur des racines. Donc

$$S =]-\infty, -1] \cup \left[\frac{1}{3}, +\infty\right[.$$

3. Démontrer que : $\forall n \in \mathbb{N}, n \leq \sqrt{n(n+1)} < n+1$. En déduire $\lfloor \sqrt{n(n+1)} \rfloor$.

On élève l'inégalité au carré, comme la fonction carrée est croissante sur \mathbb{R}_+ et que toutes les quantités sont positives :

$$\forall n \in \mathbb{N}, \quad n \leqslant \sqrt{n(n+1)} < n+1 \iff n^2 \leqslant n(n+1) < (n+1)^2$$

$$\iff n^2 \leqslant n^2 + n < n^2 + 2n + 1$$

$$\iff 0 \leqslant n < 2n + 1.$$

Cette dernière inégalité est triviale, donc par équivalence la première l'est également. On a encadré $\sqrt{n(n+1)}$ entre deux entiers consécutifs donc

2

$$\lfloor \sqrt{n(n+1)} \rfloor = n.$$

Exercice 2 Quelques démonstrations (12 points)

1. Démontrer que le produit de deux fonctions impaires définies sur $\mathbb R$ est une fonction paire.

Soit f et g deux fonctions impaires définies sur \mathbb{R} . Alors :

$$\forall x \in \mathbb{R}, \quad f(-x) = -f(x) \quad \text{et} \quad g(-x) = -g(x).$$

Notons $h = f \times g$ la fonction produit, alors :

$$\forall x \in \mathbb{R}, \quad h(-x) = f(-x)g(-x)$$
$$= (-f(x))(-g(x))$$
$$= f(x)g(x)$$
$$= h(x).$$

Ainsi, le produit de deux fonctions impaires définies sur $\mathbb R$ est une fonction paire.

2. Soit $x \in \mathbb{R}_+ \setminus \mathbb{Q}$. Montrer que $\sqrt{x} \notin \mathbb{Q}$.

Par l'absurde, supposons que $\sqrt{x} \in \mathbb{Q}$. Alors :

$$\exists (p,q) \in \mathbb{Z} \times \mathbb{N}^*, \quad \sqrt{x} = \frac{p}{q} \implies x = \frac{p^2}{q^2} \in \mathbb{Q}.$$

C'est impossible car $x \in \mathbb{R}_+ \setminus \mathbb{Q}$, donc $\sqrt{x} \notin \mathbb{Q}$.

3. Démontrer que pour tout $x \in \mathbb{R}$, $|x-1| \le x^2 - x + 1$.

Élever l'inégalité au carré n'est pas une bonne idée, dans la mesure où on obtient un polynôme de degré 4 à gérer ensuite...

Si $x \ge 1$, l'inégalité devient :

$$x - 1 \le x^2 - x + 1 \iff 0 \le x^2 - 2x + 2$$

 $\iff 0 \le (x - 1)^2 + 1.$

Si $x \leq 1$, l'inégalité devient :

$$1 - x \le x^2 - x + 1 \iff 0 \le x^2.$$

Dans les deux cas, l'inégalité est toujours vraie, donc :

$$\forall x \in \mathbb{R}, \quad |x-1| \leqslant x^2 - x + 1.$$

3

4. Démontrer par contraposée l'assertion suivante :

$$\forall (x,y) \in \mathbb{R}^2, \quad (x \neq -1) \land (y \neq -1) \implies 1 + x + y + xy \neq 0.$$

Écrivons la contraposée de cette assertion:

$$\forall (x,y) \in \mathbb{R}^2, \quad 1 + x + y + xy = 0 \implies (x = -1) \lor (y = -1).$$

Soit $(x,y) \in \mathbb{R}^2$

$$1 + x + y + xy = (1 + x)(1 + y) = 0 \iff (x + 1 = 0) \lor (y + 1 = 0)$$
$$\iff (x = -1) \lor (y = -1).$$

Exercice 3 Bonus (+5 points)

On considère un réel x non nul et tel que $x+\frac{1}{x}\in\mathbb{Z}$. Montrer que pour tout $n\in\mathbb{N},\ x^n+\frac{1}{x^n}\in\mathbb{Z}$.

Pour avoir quelques idées, commençons par regarder ce qu'il se passe pour les premières valeurs de n.

— Si
$$n = 0$$
, alors $x^0 + \frac{1}{x^0} = 1 + 1 = 2 \in \mathbb{Z}$.

— Si
$$n = 2$$
, $x + \frac{1}{x} \in \mathbb{Z}$ donc $\left(x + \frac{1}{x}\right)^2 \in \mathbb{Z}$. Mais :

$$\left(x + \frac{1}{x}\right)^2 = x^2 + 2 + \frac{1}{x^2} \implies x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2 \in \mathbb{Z}$$

— Si
$$n = 3$$
, $x + \frac{1}{x} \in \mathbb{Z}$ donc $\left(x + \frac{1}{x}\right)^3 \in \mathbb{Z}$. Mais:

$$\left(x + \frac{1}{x}\right)^3 = x^3 + 3x + 3\frac{1}{x} + \frac{1}{x^3} \implies x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)^3 - 3\left(x + \frac{1}{x}\right) \in \mathbb{Z}$$

On pourrait continuer à élever à la puissance 4, mais on sent que les calculs se compliquent. Néanmoins, on remarque que multiplier par $\left(x+\frac{1}{x}\right)$ permet d'obtenir des relations entre les quantités mises en jeu pour différentes valeurs de n. Par exemple :

$$\left(x^n + \frac{1}{x^n}\right)\left(x + \frac{1}{x}\right) = x^{n+1} + \frac{1}{x^{n-1}} + x^{n-1} + \frac{1}{x^{n+1}} = \left(x^{n+1} + \frac{1}{x^{n+1}}\right) + \left(x^{n-1} + \frac{1}{x^{n-1}}\right)$$

Montrons donc par récurrence double que pour tout $n \in \mathbb{N}$, $\mathcal{P}(n) = \langle x^n + \frac{1}{x^n} \in \mathbb{Z} \rangle$ est vraie.

Initialisation : La propriété est vraie au rang n=0, n=1 et n=2 (les deux premiers suffisent).

Hérédité: Supposons $\mathcal{P}(n)$ et $\mathcal{P}(n-1)$ et démontrons $\mathcal{P}(n+1)$.

$$\left(x^{n} + \frac{1}{x^{n}}\right)\left(x + \frac{1}{x}\right) = \left(x^{n+1} + \frac{1}{x^{n+1}}\right) + \left(x^{n-1} + \frac{1}{x^{n-1}}\right)$$

Ainsi,

$$x^{n+1} + \frac{1}{x^{n+1}} \in \mathbb{Z}$$
 d'après $\mathcal{P}(n)$ et $\mathcal{P}(n-1)$,

donc $\mathcal{P}(n+1)$ est vraie.

Conclusion : Par principe de récurrence double, on conclut :

$$\forall n \in \mathbb{N}, \quad x^n + \frac{1}{x^n} \in \mathbb{Z}.$$

2 Relations

Exercice 4 Ordre partiel ou ordre total? (6 points)

On considère deux relations sur \mathbb{N}^* :

- $x \leq_1 y \iff x \mid y$ (divisibilité),
- $x \leq_2 y \iff x \leqslant y \text{ (ordre usuel)}.$
- 1. Montrer que \leq_1 et \leq_2 sont des relations d'ordre.
 - Relation \leq_1 :
 - réflexive : $x \mid x$
 - $\label{eq:state_eq} \begin{array}{ll} & -\text{ antisymétrique (si } x \mid y \text{ et } y \mid x \text{ alors } x = y) \\ & -\text{ transitive } (x \mid y \wedge y \mid z \implies x \mid z). \end{array}$
 - Relation \leq_2 (ordre usuel) : réflexive, antisymétrique, transitive.

Donc ce sont des relations d'ordre.

- 2. Montrer que \leq_1 est un ordre partiel non total et que \leq_2 est un ordre total.
 - \leq_1 n'est pas total : il existe des incomparables, par ex. 2 et 3.

5

• \leq_2 est total :

$$\forall (x,y) \in (\mathbb{N}^*)^2, \quad (x \leqslant y) \lor (y \leqslant x).$$

Exercice 5 Classes d'équivalence (10 points)

On considère la relation ${\mathscr R}$ définie sur ${\mathbb Z}$ par :

$$x\mathcal{R}y \iff x \equiv y$$
 [4].

1. Montrer que $\mathcal R$ est une relation d'équivalence.

On a $x\mathcal{R}y \iff x \equiv y$ [4]. Nous avons déjà montré qu'il s'agit bien d'une relation d'équivalence (réflexive, symétrique, transitive).

2. Déterminer les classes d'équivalence et donner la partition associée.

Les classes d'équivalence sont :

$$\begin{split} \tilde{0} &= \{4k \mid k \in \mathbb{Z}\} \\ \tilde{1} &= \{4k+1 \mid k \in \mathbb{Z}\} \\ \tilde{2} &= \{4k+2 \mid k \in \mathbb{Z}\} \\ \tilde{3} &= \{4k+3 \mid k \in \mathbb{Z}\}. \end{split}$$

La partition associée est $\mathbb{Z} = \tilde{0} \cup \tilde{1} \cup \tilde{2} \cup \tilde{3}$.

3. Donner un représentant canonique de chaque classe.

Un représentant canonique possible est le reste $r \in \{0,1,2,3\}$.

Exercice 6 Relation d'ordre (10 points)

On définit une relation \mathscr{R} sur \mathbb{R}^2 par

$$(x_1,y_1)\mathcal{R}(x_2,y_2) \iff (x_1 \leqslant x_2) \land (y_1 \leqslant y_2).$$

1. Montrer que \mathcal{R} est un ordre partiel.

- Réflexive : $(x \le x) \land (y \le y) \implies (x,y)\mathcal{R}(x,y)$.
- Antisymétrique : si $(x_1,y_1)\mathcal{R}(x_2,y_2)$ et réciproquement, alors $x_1 \leqslant x_2$, $x_1 \geqslant x_2$, $y_1 \leqslant y_2$ et $y_1 \geqslant y_2$, d'où $x_1 = x_2$ et $y_1 = y_2$.
- Transitive : immédiat par transitivité de \leqslant sur chaque coordonnée.

Donc \mathcal{R} est un ordre partiel.

2. Montrer que \mathcal{R} n'est pas un ordre total.

Il n'est pas total (par ex. (0,1) et (1,0) sont incomparables).

3. Donner un exemple de sous-ensemble de \mathbb{R}^2 sur lequel \mathcal{R} devient un ordre total.

Sur $S = \{(t,0) \mid t \in \mathbb{R}\}$, \mathscr{R} induit l'ordre usuel (total) via la première coordonnée.

3 Arithmétique (ME uniquement)

Exercice 7 Division euclidienne et puissance (6 points)

Soient $a \in \mathbb{Z}$, $b \in \mathbb{N}^*$ et $n \in \mathbb{N}$.

Le quotient et le reste de la division euclidienne de a-1 par b sont respectivement $q\in\mathbb{Z}$ et $r\in[\![0,b-1]\!]$.

Quel est le quotient de la division euclidienne de $ab^n - 1$ par b^{n+1} ?

Soient $a \in \mathbb{Z}$, $b \in \mathbb{N}^*$ et $n \in \mathbb{N}$. Nous avons

$$a-1=bq+r$$
, avec $q\in\mathbb{Z}$ et $0\leqslant r\leqslant b-1$.

Il en résulte

$$ab^{n} - 1 = ab^{n} - b^{n} + b^{n} + 1,$$

$$= (a - 1)b^{n} + b^{n} - 1,$$

$$= (bq + r)b^{n} + b^{n} - 1,$$

$$= b^{n+1}q + b^{n}(r+1) - 1.$$

Puisque $0 \le r \le b-1$, nous en déduisons successivement :

$$1 \leqslant r+1 \leqslant b$$
$$b^n \leqslant (r+1)b^n \leqslant b^{n+1}$$
$$b^n - 1 \leqslant (r+1)b^n - 1 \leqslant b^{n+1} - 1$$

D'une part, nous avons

$$b^n - 1 \geqslant 0 \operatorname{car} b \geqslant 1$$

D'autre part, puisque $b^{n+1} - 1 \in \mathbb{N}$, il vient

$$b^{n+1} - 1 < b^{n+1}$$

ce qui établit

$$0 \le (r+1)b^n - 1 < b^{n+1}$$

Nous en concluons que dans la division euclidienne de $ab^n - 1$ par b^{n+1} , le quotient est q et le reste est $r' = (r+1)b^n - 1$.

Exercice 8 Diviseur d'un produit de p entiers consécutifs (8 points)

Soit
$$(n,p) \in (\mathbb{N}^*)^2$$
.

Nous désignons par P_n le produit de p entiers consécutifs dont le premier facteur est n. Il vient

$$P_n = \prod_{k=0}^{p-1} (n+k).$$

En considérant deux cas concernant le reste de la division euclidienne de n par p, montrer que

$$\forall n \in \mathbb{N}^*, p \mid P_n.$$

Effectuons la division euclidienne de n par p, ce qui donne

$$n = pq + r$$
, avec $q \in \mathbb{N}$ et $0 \le r < p$.

Par disjonction, nous distinguous deux cas : r = 0 ou 0 < r < p.

 $1^{er} cas : r = 0.$

Dans ce cas, nous avons n = pq, ce qui implique

$$P_n = \prod_{k=0}^{p-1} (pq+k) = pq \prod_{k=1}^{p-1} (pq+k) = p \left(q \prod_{k=1}^{p-1} (pq+k) \right)$$

Par suite, nous obtenons

$$P_n = P_{pq} = pQ$$
, avec $Q = q \prod_{k=1}^{p-1} (pq + k) \in \mathbb{N}$,

ce qui justifie que p divise P_n .

2º cas : 0 < r < p, c'est-à-dire $1 \le r \le p - 1$.

Dans ce second cas, nous avons

$$P_n = \prod_{k=0}^{p-1} (pq + r + k)$$

Puisque

$$1 \leqslant r \leqslant p-1 \text{ et } 0 \leqslant k \leqslant p-1,$$

nous en déduisons, par addition membres à membres,

$$1 \leqslant r + k \leqslant 2p - 1$$

Par conséquent, en posant j = r + k, nous obtenons

$$P_n = \prod_{j=1}^{2p-1} (pq+j)$$

$$= \prod_{j=1}^{p-1} (pq+j) \times (pq+p) \times \prod_{j=p+1}^{2p-1} (pq+j)$$

$$= p \left(\prod_{j=1}^{p-1} (pq+j) \times (q+1) \times \prod_{j=p+1}^{2p-1} (pq+j) \right),$$

ce qui donne

$$P_n = P_{pq+r} = pQ',$$

avec

$$Q' = \left(\prod_{j=1}^{p-1} (pq+j) \times (q+1) \times \prod_{j=p+1}^{2p-1} (pq+j)\right) \in \mathbb{N},$$

ce qui prouve que p divise P_n .

Nous en concluons que, quel que soit l'entier $p\geqslant 1$, le produit de p entiers naturels consécutifs est divisible par p.