

Lycée Saint Augustin Classe de Terminale spécialité Mathématiques expertes 2025–2026 M. Berard

MATHÉMATIQUES CORRECTION DU DEVOIR SURVEILLÉ N° 1

Durée : 2 heures Barème : 27 points

Logique et ensembles. Applications. Arithmétique.

1 Logique, ensembles

Exercice 1 Quantificateurs (12 points)

- 1. Traduire à l'aide de quantificateurs mathématiques :
 - a) (1 pt) La fonction f est croissante sur \mathbb{R}_+ .

$$\forall x, y \in \mathbb{R}_+, \quad x \leqslant y \implies f(x) \leqslant f(y).$$

b) (1 pt) La fonction g admet un minimum sur \mathbb{R}^* .

$$\exists x_0 \in \mathbb{R}^*, \forall x \in \mathbb{R}^*, f(x) \geqslant f(x_0).$$

c) (1 pt) La fonction h est constante sur [-1,1].

$$\forall x, y \in [-1, 1], \quad f(x) = f(y).$$

d) (1 pt) Tous les réels de [-1,1] sont de la forme $\sin(\theta)$.

$$\forall x \in [-1,1], \exists \theta \in \mathbb{R}, \quad x = \sin(\theta).$$

- 2. Convertir en langage usuel:
 - a) $(1 pt) \forall (n,m) \in \mathbb{N}^2, u_n = u_m.$

La suite $(u_n)_{n\in\mathbb{N}}$ est constante sur \mathbb{N} .

b) $(1 \ pt) \ \forall n \in \mathbb{N}, \ (\exists p \in \mathbb{N}, \ n = 2p + 1) \implies (\exists q \in \mathbb{N}, \ n^2 = 2q + 1).$

Le carré d'un nombre impair est un nombre impair.

3. (1 pt) Voici la définition avec des quantificateurs de « $\lim_{n\to+\infty}u_n=\ell$ ». Nier cette assertion :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, n > N \implies |u_n - \ell| \leqslant \varepsilon$$

$$\exists \varepsilon > 0, \forall N \in \mathbb{N}, (n > N) \land (|u_n - \ell| > \varepsilon).$$

- 4. <u>Justifier</u> si les affirmations suivantes sont vraies ou fausses.
 - a) $(1 \ pt) \ \forall (x,y) \in \mathbb{R}^2, \ x^2 = y^2 \implies x = y.$

Cette affirmation est **fausse**. En effet, $(-1)^2 = 1^2$ et $-1 \neq 1$.

2

b) $(1 \ pt) \ \forall x \in [0, +\infty[, x^2 > x]$.

Cette affirmation est **fausse**. En effet, $\left(\frac{1}{2}\right)^2 \leqslant \frac{1}{2}$.

c) (1 pt) Tout nombre entier de la forme 4n-1 avec $n \in \mathbb{N}^*$ est premier.

Cette affirmation est **fausse**. En effet, avec $n=4,\,15=4\times 4-1$ et 15 n'est pas premier (c'est un multiple de 3.

d) $(2 \ pt) \ \forall \ y \in]-1,1[, \ \exists \ x \in]-1,1[, \ y < x.$

Cette affirmation est vraie. Montrons-la.

Soit $y \in]-1,1[.$

On pose

$$x = \frac{y+1}{2}.$$

Comme y > -1, y + 1 > 0 donc x > 0 > -1.

Comme y < 1, y + 1 < 2, donc x < 1.

Ainsi, $x \in]-1,1[$.

Par ailleurs:

$$y < 1 \iff 2y < y + 1$$

 $\iff y < \frac{y+1}{2}$

Ainsi, y < x.

On a donc bien:

$$\forall \, y \in]-1,1[, \, \exists \, x \in]-1,1[, \quad y < x.$$

Exercice 2 L'opération ∇ (Louis seulement) (4 points)

Soit E un ensemble. Pour tous sous-ensembles A et B de E, on pose $A\nabla B = \overline{A \cup B}$.

1. (1 pt) Soit A un sous-ensemble de E. Exprimez \overline{A} à l'aide de A et de l'opération ∇ .

3

$$A\nabla A = \overline{A \cup A} = \overline{A}.$$

2. (1 pt) Soit A et B deux sous-ensembles de E, calculer et simplifier $(A \nabla A) \nabla (B \nabla B)$.

$$(A\nabla A)\nabla(B\nabla B) = \overline{A}\nabla \overline{B} = \overline{\overline{A} \cup \overline{B}} = A \cap B.$$

3. (2 pts) Soit A et B deux sous-ensembles de E. Exprimer $A \cup B$ et $A \cap B$ à l'aide de A, B et de la loi ∇ uniquement.

Remarque : cela signifie qu'il ne faut laisser ni union, ni intersection, ni complémentaire dans le résultat de cette question.

Comme vu à la question précédente :

$$A \cap B = (A\nabla A)\nabla(B\nabla B).$$

$$A \cup B = \overline{A\nabla B} = (A\nabla B)\nabla(A\nabla B).$$

2 Arithmétique (Maths expertes seulement)

Exercice 3 Division de polynômes entiers (4 points)

Soit $n \in \mathbb{N}^*$. Déterminer le quotient et le reste de la division euclidienne de

1. (2 pts) 8n - 3 par 4n + 1,

Soit $n \in \mathbb{N}^*$.

Nous faisons apparaître le quotient 4n+1 en décomposant 8n-3 de la façon suivante :

$$8n - 3 = 8n + 2 - 2 - 3 = (4n + 1) \times 2 - 5.$$

La condition sur le reste r de cette division euclidienne est

$$0 \le r < 4n + 1$$
.

Ainsi l'égalité précédente ne convient pas. Cependant, nous en déduisons

$$8n - 3 = (4n + 1) \times 2 - (4n + 1) + (4n + 1) - 5$$
$$= (4n + 1) \times 1 + 4n - 4$$

Puisque, pour $n \in \mathbb{N}^*$, nous avons

$$0 \le 4(n-1) < 4n+1$$
,

nous en concluons que dans la division euclidienne de 8n-3 par 4n+1, le reste est r=4(n-1), le quotient est q=1.

2. $(2 pts) 3n^2 + 2n par n + 1.$

Division de $3n^2 + 2n$ par n + 1 avec $n \in \mathbb{N}^*$.

Nous pouvons utiliser la méthode précédente en faisant apparaître le terme n+1. Cependant nous proposons une autre méthode en divisant le polynôme $3n^2+2n$ par n+1.

4

Cette dernière est effectuée en adoptant la disposition qui suit.

$$\begin{array}{c|c}
3n^2 + 2n & n+1 \\
 & -(3n^2 + 3n) \\
 & -n \\
 & -(-n-1) \\
 & +1
\end{array}$$

Il en résulte, pour tout entier $n \ge 1$,

$$3n^2 + 2n = (n+1)(3n-1) + 1$$
, avec $0 \le 1 < n+1$

ce qui justifie que dans la division euclidienne de $3n^2 + 2n$ par n + 1, le reste est r = 1, le quotient est q = 3n - 1.

3 Applications

Exercice 4 Une démonstration (6 points)

Soient E et F deux ensembles.

Montrer qu'il existe une application injective de E dans F si et seulement s'il existe une application surjective de F dans E.

Cet exercice est un exercice de rédaction. Soyez extrêmement rigoureux dans vos raisonnements et prenez soin d'expliquer ce que vous faites clairement.

- Supposons qu'il existe une injection f de E vers F. Chaque élément de f(E) a donc exactement un antécédent par f. Soit $x_0 \in E$. Soit $g: F \longrightarrow E$ l'application définie ainsi : si $y \in f(E)$, alors g(y) est l'unique antécédent de g par g; si $g \notin g(E)$, g(g) = g(E). L'application g est bien définie. Montrons qu'elle est surjective. Soit g est l'unique antécédent de g par g est definition, $g \in g(E)$, donc g(g) est l'unique antécédent de g par g donc g(g) est l'unique antécédent de g par g donc g est surjective. Donc il existe une surjection de g vers g est surjective. Donc il existe une surjection de g vers g est surjective. L'application g dépend du choix de g est surjective).
- Réciproquement, supposons qu'il existe une surjection g de F vers E. Chaque élément de E a donc au moins un antécédent par g. Pour chaque élément x de E, choisissons un de ses antécédents par g (peu importe lequel), et appelons-le f(x). Cela définit une application $f:E\to F$. Montrons que cette application est injective. Soit $x\in E$. Par définition, f(x) est un antécédent de x par g, donc g(f(x))=x, donc $g\circ f=\operatorname{Id}_E$, donc $g\circ f$ est bijective, donc injective. Donc f est injective. Donc il existe une injection de E dans F.

Exercice 5 Bijection(s) (5 points)

On s'intéresse à l'application h:

$$h \mid \begin{bmatrix} -1,1 \end{bmatrix} \longrightarrow \mathbb{R}$$
$$x \longmapsto 1 - x^2$$

- 1. (1 pt) La fonction h est-elle injective? surjective?
 - On a :

$$h$$
 injective $\iff \forall (x_1,x_2) \in [-1,1]^2, x_1 \neq x_2 \implies h(x_1) \neq h(x_2).$

Or
$$-1 \neq 1$$
 et $h(-1) = 1 - (-1)^2 = 0 = h(1)$. On a donc

$$\exists (x_1, x_2) \in [-1, 1]^2, (x_1 \neq x_2) \land (h(x_1) = h(x_2)),$$

ce qui équivaut à h non injective.

— D'autre part :

$$h$$
 surjective $\iff \forall y \in \mathbb{R}, \exists x \in [-1,1], y = h(x).$

Or, pour tout réel x, $1-x^2 \le 1$; l'équation $2=1-x^2$ n'admet ainsi pas de solutions sur [-1,1]. On a donc

$$\exists\,y\in\mathbb{R},\,\forall\,x\in[-1,\!1],\,y\neq h(x),$$

ce qui équivaut à h non surjective.

2. $(2 \ pt)$ Soit $h_1:[0,1] \to [0,1], \quad x \mapsto 1-x^2$. Montrer que h_1 est bijective et déterminer ${h_1}^{-1}$.

Soit la fonction g_1 définie par :

$$g_1 \mid [0,1] \longrightarrow [0,1]$$

$$x \longmapsto \sqrt{1-x}$$

On a d'une part, pour tout $x \in [0,1]$:

$$g_1 \circ h_1(x) = g_1 \left(1 - x^2 \right)$$

$$= \sqrt{1 - (1 - x^2)}$$

$$= \sqrt{x^2}$$

$$= |x|$$

$$= x \quad \text{car } x \geqslant 0.$$

6

Ainsi, $g_1 \circ h_1 = \mathrm{Id}_{[0,1]}$.

D'autre part, on a, pour tout $x \in [0,1]$:

$$h_1 \circ g_1(x) = h_1 \left(\sqrt{1 - x} \right)$$
$$= 1 - \left(\sqrt{1 - x} \right)^2$$
$$= 1 - (1 - x)$$
$$= x$$

Ainsi, $h_1 \circ g_1 = \mathrm{Id}_{[0,1]}$.

Par conséquent, h_1 est bijective et $h_1^{-1} = g_1$.

3. (2 pt) Soit $h_2:[-1,0]\to[0,1],\quad x\mapsto 1-x^2.$ Montrer que h_2 est bijective et déterminer ${h_2}^{-1}.$

Soit la fonction g_2 définie par :

$$g_2 \left| \begin{array}{ccc} [-1,0] & \longrightarrow & [0,1] \\ x & \longmapsto & -\sqrt{1-x} \end{array} \right|$$

On a d'une part, pour tout $x \in [-1,0]$:

$$g_2 \circ h_2(x) = g_2 \left(1 - x^2 \right)$$

$$= -\sqrt{1 - (1 - x^2)}$$

$$= -\sqrt{x^2}$$

$$= -|x|$$

$$= x \quad \text{car } x \leq 0.$$

Ainsi, $g_2 \circ h_2 = \mathrm{Id}_{[-1,0]}$.

D'autre part, on a, pour tout $x \in [0,1]$:

$$h_2 \circ g_2(x) = h_2 \left(-\sqrt{1-x} \right)$$
$$= 1 - \left(-\sqrt{1-x} \right)^2$$
$$= 1 - (1-x)$$
$$= x$$

Ainsi, $h_2 \circ g_2 = \underline{\mathrm{Id}}_{[0,1]}$.

Par conséquent, h_2 est bijective et $h_2^{-1} = g_2$.