Chapitre 1 Notions de logique, ensembles

■ Notions de logique

► Vocabulaire : « assertion » (ou « proposition mathématique »)

Il s'agit d'une phrase non ambigüe à laquelle est associée une valeur de vérité « vrai » ou « faux » dans le cadre d'une théorie axiomatique.

▶ Définitions :

- La négation;
- Les connecteurs logiques (binaires) : il existe 16 connecteurs logiques binaires; parmi ceux-ci on présente : « ∧ » (conjonction), « ∨ » (disjonction), « ⇒ » et « ⇔ ».
- ▶ Propriétés : Le « ou » est inclusif; on peut écrire « $A \Rightarrow B$ » sous la forme « $(\neg A) \lor B$ ».
- ▶ **Définition** : La réciproque de l'implication « $A \Rightarrow B$ » est l'implication « $B \Rightarrow A$ » (à ne pas confondre ni avec la contraposée, ni avec la négation).

Propriétés (connecteurs logiques) :

- Associativité de « ∧ » et « ∨ »;
- Transitivité de « \Rightarrow »;
- Distributivité de « ∧ » sur « ∨ »;
- Distributivité de « \vee » sur « \wedge ».

Propriétés (Lois de De Morgan) :

Soit A et B deux assertions. On a :

$$\neg (A \land B) \iff (\neg A) \lor (\neg B)$$

$$\neg (A \lor B) \iff (\neg A) \land (\neg B)$$

▶ **Définitions**: Référentiel; Prédicat à une variable $\mathscr{P}(x)$; Les quantificateurs; le quantificateur universel \forall , le quantificateur existentiel \exists . Notation \exists ! (traduite à l'aide de \forall et \exists).

Ensembles

- ▶ Notations : \in , \ni , \subset et \supset ; $x \in E \iff \{x\} \subset E$. Famille des parties d'un ensemble $E : \mathcal{P}(E)$; $F \subset E \iff F \in \mathcal{P}(E)$.
- ▶ **Définition (opérations usuelles dans** $\mathcal{P}(E)$ **)** : Si A et B sont deux parties d'un ensemble E, on définit :
 - La réunion : $A \cup B = \{x \in E \mid (x \in A) \lor (x \in B)\};$
- L'intersection : $A \cap B = \{x \in E \mid (x \in A) \land (x \in B)\}$;
- Le complémentaire dans $E: E \setminus A = \{x \in E \mid x \notin A\}$;
- La différence de A et $B: A \setminus B = A \cap (E \setminus B)$.
- ▶ Vocabulaire : Deux parties A et B sont dites disjointes si $A \cap B = \emptyset$ et distinctes si $A \neq B$.

Chapitre 2 Divers modes de raisonnement

- ▶ Raisonnement par déduction : $A \implies B$, exemples.
- ▶ Raisonnement par équivalence : $A \iff B$, exemples.
- ▶ Raisonnement par analyse-synthèse : Propriétés du type « $\exists ! x \in E, \mathscr{P}(x)$ », exemples.
- ► Raisonnement par contraposée :
 - $(\neg B \implies \neg A) \iff (A \implies B)$, exemples.
- ▶ Raisonnement par l'absurde : $\neg A$ faux \iff A vrai, exemples.
- ► Raisonnement par disjonction de cas :
 - Si $(A_1 \wedge A_2 \dots) \iff A$, il suffit de montrer A_1, A_2, \dots , exemples.
- ► Raisonnement par récurrence : Cf. chapitre 6.

Chapitre 3 Applications

■ Correspondances, fonctions, applications

- ▶ **Définition**: Produit cartésien; $\operatorname{card}(E \times F) = \operatorname{card}(E) + \operatorname{card}(F)$; Produit cartésien d'un nombre fini d'ensembles
- ▶ **Définition** : Une application f de E vers F est la donnée d'un triplet (E,F,Γ) où Γ est une partie de $E\times F$ telle que :
- $\forall (x,y,y') \in E \times F \times F, [(x,y) \in \Gamma \text{ et } (x,y') \in \Gamma] \implies y = y'.$ On écrit y = f(x) plutôt que $(x,y) \in \Gamma$.
- ▶ **Définition :** Une application est une fonction dont l'ensemble de définition est égal à l'ensemble de départ. En pratique, on tolère l'utilisation de « fonction » et « application » indifféremment. On note l'ensemble des fonctions de E dans F par $\mathcal{F}(E,F)$ ou F^E .
- ▶ **Définition :** L'ensemble de définition de f est :
 - $\{x\in E\mid \exists\,y\in F,\,(x,y)\in\Gamma\}.$

- ▶ **Propriété**: Soient E et F deux ensembles non vides. Soit $u=(\Gamma,E,F)$ une application, avec Γ le graphe de u. On a alors : $\forall \, x \in E, \, \exists \,! \, y \in F, \quad (x,y) \in \Gamma.$
- ▶ Définition : L'ensemble image de f, noté $\mathrm{Im}(f)$ ou f(E) est l'ensemble $\{f(x) \mid x \in E\}$.
- ▶ **Définition**: Restriction, prolongement.

■ Applications injectives, surjectives et bijectives

▶ Définitions :

- f injective : $\forall (x_1, x_2) \in E^2$, $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$.
- f surjective : $\forall y \in F, \exists x \in E, y = f(x)$.
- f bijective : injective et surjective.
- ► Propriété (caractérisation des injections) : Les propositions suivantes sont équivalentes :
- (i) L'application f est injective.
- (\it{ii}) Tout élément de F possè de au plus un antécédent par f.
- (iii) Pour tout $y \in F$, l'équation f(x) = y possède au plus une solution.
- $(iv) \ \forall (x_1, x_2) \in E^2, \ (f(x_1) = f(x_2) \implies x_1 = x_2).$

- ► Propriété (caractérisation des surjections) : Les propositions suivantes sont équivalentes :
 - (i) L'application f est surjective.
- (ii) Tout élément de F a au moins un antécédent par f.
- (iii) Pour tout $y \in F$, l'équation f(x) = y possède au moins une solution.
- (iv) $\forall y \in F, \exists x \in E, y = f(x).$
- ► Propriété (caractérisation des bijections) : Les propositions suivantes sont équivalentes :
- (i) L'application f est bijective.
- (ii) Tout élément de F a un et un seul antécédent par f.
- (iii) Pour tout $y \in F$, l'équation f(x) = y possède une unique solution.
- (iv) $\forall u \in F, \exists ! x \in E, y = f(x).$

■ Composition des applications

- ▶ Définition : L'application $h: E \longrightarrow G$ définie par : $\forall x \in E, \ h(x) = g[f(x)]$ est appelée composée de f par g et notée $g \circ f$.
- ▶ Définition et propriétés : La composition des applications « ∘ » est une opération associative mais non commutative en général : $(f \circ g) \circ h = f \circ (g \circ h)$ mais $g \circ f \neq f \circ g$ en général.
- \blacktriangleright **Exemple :** Composition des translations de vecteur du plan.

- Propriétés (composée d'injections, surjections, bijections) : Soient $f \in F^E$ et $g \in G^F$.
 - 1. Si f et g sont injectives, alors $g \circ f$ est injective.
 - **2.** Si f et g sont surjective, alors $g \circ f$ est surjective.
 - **3.** Si f et g sont bijectives, alors $g \circ f$ est bijective.
- **Propriétés :** Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ des applications.
 - **1.** Si $g \circ f$ est injective, alors f est injective.
 - **2.** Si $g \circ f$ est surjective, alors g est surjective.

■ Application réciproque

- ▶ **Définition** : Application identité $\mathrm{Id}_E: E \longrightarrow E:$ $\mathrm{Id}_E(x) = x.$
 - Définition (caractérisation de la fonction réciproque) :
 - Si $f: E \to F$ est une application, les deux propriétés suivantes sont équivalentes :
 - **1.** f est bijective de E sur F;
 - **2.** Il existe une application $g: F \to E$ telle que $g \circ f = \operatorname{Id}_E$ et $f \circ g = \operatorname{Id}_F$.
 - De plus, si l'une des conditions est vérifiée, la fonction g est unique et est appelée fonction réciproque de f, notée f^{-1} .
- ▶ Remarque : On peut avoir $f \circ g = \mathrm{Id}_F$ ou $g \circ f = \mathrm{Id}_E$ sans que f et g soient bijectives.
- ► Corollaire :
 - 1. Si $f \in F^E$ est bijective, alors u^{-1} est bijective et $(u^{-1})^{-1} = u$.
 - **2.** Si $u \in F^E$ et $v \in G^F$ sont deux applications bijectives, alors $(v \circ u)^{-1} = u^{-1} \circ v^{-1}$.

■ Images directes et réciproques d'ensembles

- ▶ Définition (Images directe et réciproque d'une partie) : Si $f \in F_E$, on définit :
 - $\forall A \in \mathcal{P}(E), f(A) = \{f(x), x \in A\}.$
 - $\forall B \in \mathcal{P}(F), f^{-1}(B) = \{x \in E \mid f(x) \in B\}.$
- ▶ Propriétés : Soit $f: E \longrightarrow F$ une application et soient A et B deux parties de E, C et D deux parties de F. On a alors :
- **1.** $f(A \cup B) = f(A) \cup f(B)$.
- **2.** $f(A \cap B) \subset f(A) \cap f(B)$.
- 3. $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
- **4.** $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
- **5.** $f(f^{-1}(C)) \subset C$.
- **6.** $f^{-1}(f(A)) \supset A$.

À suivre...

Chapitre 21 **Divisibilité dans** \mathbb{Z}

■ Diviseurs d'un entier relatif

▶ Définition (Divisibilité dans \mathbb{Z}) : Soient $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$. On dit que b divise a si et seulement si

$$\exists k \in \mathbb{Z}, \quad a = b \times k.$$

Lorsque b divise a, on note b|a.

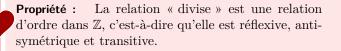
L'ensemble des diviseurs de a, noté $\mathrm{Div}(a)$ est défini par

$$Div(a) = \{b \in \mathbb{Z}^* \mid b|a\} = \{b \in \mathbb{Z}^* \mid a = b \times k, k \in \mathbb{Z}\}.$$

Remarque :

- Lorsque b divise a, on dit aussi que b est un diviseur de a, ou bien, a est un multiple de b.
- $Div(0) = \mathbb{Z}$.
- Par contre, aucun entier relatif non nul est divisible par 0.
- ▶ **Exemple**: L'ensemble des entiers relatifs n tels que 2n+5 divise 7 est $\{-6, -3, -2, 1\}$.
- ▶ **Propriété** : Quel que soit $a \in \mathbb{Z}$, Div(a) = Div(|a|).
- ▶ Remarque : Cette proposition permet, dans la recherche des diviseurs d'un entier relatif a, de restreindre la détermination de Div(a) à Div(|a|), avec $|a| \in \mathbb{N}$.
- ► Algorithme (de recherche brute des diviseurs d'un entier naturel) :

```
def diviseurs(n):
L=[]
for k in range(1,n+1):
    if n%k==0:
        L.append(k)
return L
```



► Remarques :

- La relation | est une relation d'ordre partiel car deux entiers relatifs ne sont pas toujours comparables pour |, par opposition à la relation ≤ qui est d'ordre total dans Z.
- Nous avons $\{-1,1,-a,a\} \subset \text{Div}(a)$.
- ▶ Propriété (Lien entre | et \leq) : Soient a et b deux entiers relatifs non nuls.

$$b|a \implies |b| \leqslant |a|$$
.

► Remarques :

- Lorsque b = 0, la proposition est fausse.
- La réciproque est évidemment fausse.
- ▶ Propriété (Divisibilité et combinaison linéaire) : Soient a, b et c trois entiers relatifs avec $c \neq 0$.

Si c|a et c|b, alors, quels que soient les entiers relatifs α et β ,

$$c|\alpha a + \beta b$$
.

En particulier, nous avons : c|a+b et c|a-b.

- ▶ Remarque : Comme souvent en arithmétique, la réciproque de cette proposition est fausse.
- ▶ **Exemple**: L'ensemble des diviseurs communs aux deux entiers relatifs a = 6n + 5 et b = 7n + 6, avec $n \in \mathbb{Z}$, est

$$\mathrm{Div}(a)\cap\mathrm{Div}(b)=\{-1,1\}.$$

Dans ce cas, on dit que a et b sont premiers entre eux.

▶ Propriété : Soient $a \in \mathbb{Z}^*$, $b \in \mathbb{Z}$ et $c \in \mathbb{Z}$. Si a|b, alors a|bc et ac|bc.

► Remarques :

• La réciproque de $(a|b\implies a|bc)$ est fausse, ce qui est justifié par le contre exemple qui suit.

Pour a=6, b=4 et c=9, nous avons $6|4\times 9$ mais 6 ne divise ni 4, ni 9.

• Lorsque $c \in \mathbb{Z}^*$, la réciproque de $(a|b \implies ac|bc)$ est vraie.

lacksquare Division euclidienne dans $\mathbb Z$

▶ Axiome du plus petit élément : Toute partie B non vide de \mathbb{N} admet un plus petit élément p, ce qui signifie

$$\exists p \in \mathbb{N}, \forall b \in B, \quad (b \geqslant p) \land (p \in B).$$

Lemme d'Archimède : Quels que soient les entiers naturels x et y, avec $x \neq 0$, il existe un entier naturel n tel que

$$nx > y$$
.

► Remargues :

- Ce résultat est encore vrai lorsque $(x,y) \in \mathbb{R}_+^* \times \mathbb{R}_+$. On dit que \mathbb{R} est archimédien.
- Ce lemme est faux si x est nul.

Propriété (Division euclidienne dans \mathbb{N}): Quels que soient $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$, il existe un couple unique d'entiers naturels (q,r) satisfaisant à

$$a = bq + r$$
, avec $0 \le r < b$.

▶ Remarque : La double inégalité $0 \le r < b$ signifie également

$$r \in \{0,1,2,\ldots,b-1\},$$
 c'est-à-dire $r \in [0,b-1]$.

- ▶ Exemple : La division euclidienne d'un entier naturel par 2 induit une partition de N qui est constituée par l'union disjointe de l'ensemble des entiers naturels pairs avec l'ensemble des entiers naturels impairs.
- ▶ Remarque : Plus généralement, lors de la division euclidienne d'un entier naturel n par un entier naturel b non nul, nous définissons une partition de \mathbb{N} en b sousensembles disjoints deux à deux, qui sont classifiés selon leur reste dans cette division par b.
- ightharpoonup Exemple : Nous montrons, quel que soit l'entier naturel n, que l'entier

$$u_n = n(n+1)(2n+1)$$

est divisible par 3, puis par 6.

- ► Algorithme Nous disposons en Python des procédures suivantes :
 - a%b qui restitue le reste de la division euclidienne de a par b.
 - a//b qui restitue le quotient de la division euclidienne de a par b.

Ceci permet de proposer la fonction Python

```
\begin{array}{lll} \begin{tabular}{lll} $\tt def \ divisioneucli(a,b): \\ &\tt q=a//b \\ &\tt s=a\%b \\ &\tt return(q,r) \\ \end{array}
```

Propriété (Division d'un entier relatif par un entier naturel non nul) : Quels que soient $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$, il existe un couple unique d'entiers relatifs (q,r) satisfaisant à

$$a = bq + r$$
, avec $0 \le r < b$.

ightharpoonup Exemple : Nous prouvons que tout entier relatif n qui n'est pas divisible par 3 a un carré qui donne 1 pour

Propriété: une démonstration est exigible.

reste dans sa division euclidienne par 3.

Propriété (Division d'un entier relatif par un entier relatif non nul): Quels que soient $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$, il existe un couple unique d'entiers relatifs (q,r) satisfaisant à

$$a = bq + r$$
, avec $0 \le r < |b|$.

- ▶ Exemple : La division euclidienne de -202 par -13 restitue un quotient q = 16 et un reste r = 6.
- ▶ Remarque : La double inégalité $0 \le r < |b|$ signifie également

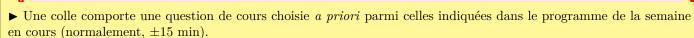
$$r \in \{0,1,2,\dots,|b|-1\}, \text{ c'est-à-dire } r \in [0,|b|-1].$$

▶ **Exemple**: Tout entier relatif a, dans la division euclidienne par -4, peut s'écrire par disjonction

$$(a = -4q) \lor (a = -4q + 1) \lor (a = -4q + 2) \lor (a = -4q + 3),$$

avec $q \in \mathbb{Z}$, ce qui définit une partition de \mathbb{Z} .

▶ Pour les parties désignées par un symbole



▶ Un cours non appris sera sanctionné par une note inférieure à 10 (même si l'exercice est fait correctement!).