Chapitre 3 **Applications**

■ Correspondances, fonctions, applications

- ▶ **Définition**: Produit cartésien; $\operatorname{card}(E \times F) = \operatorname{card}(E) + \operatorname{card}(F)$; Produit cartésien d'un nombre fini d'ensembles.
- ▶ **Définition :** Une application f de E vers F est la donnée d'un triplet (E,F,Γ) où Γ est une partie de $E\times F$ telle que :
- $\forall (x,y,y') \in E \times F \times F, [(x,y) \in \Gamma \text{ et } (x,y') \in \Gamma] \implies y = y'.$ On écrit y = f(x) plutôt que $(x,y) \in \Gamma$.
 - ▶ **Définition**: Une application est une fonction dont l'ensemble de définition est égal à l'ensemble de départ. En pratique, on tolère l'utilisation de « fonction » et « ap-
- plication » indifféremment. On note l'ensemble des fonctions de E dans F par $\mathcal{F}(E,F)$ ou F^E .
- ▶ **Définition** : L'ensemble de définition de f est : $\{x \in E \mid \exists y \in F, (x,y) \in \Gamma\}.$
- ▶ **Propriété**: Soient E et F deux ensembles non vides. Soit $u = (\Gamma, E, F)$ une application, avec Γ le graphe de u. On a alors : $\forall x \in E, \exists ! y \in F, (x,y) \in \Gamma$.
- ▶ Définition : L'ensemble image de f, noté Im(f) ou f(E) est l'ensemble $\{f(x) \mid x \in E\}$.
- ▶ **Définition**: Restriction, prolongement.

■ Applications injectives, surjectives et bijectives

▶ Définitions :

- f injective : $\forall (x_1, x_2) \in E^2$, $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$.
- f surjective : $\forall y \in F, \exists x \in E, y = f(x)$.
- f bijective : injective et surjective.
- ► Propriété (caractérisation des injections) : Les propositions suivantes sont équivalentes :
- (i) L'application f est injective.
- (ii) Tout élément de F possède au plus un antécédent par f.
- (iii) Pour tout $y \in F$, l'équation f(x) = y possède au plus une solution.
- $(iv) \ \forall (x_1, x_2) \in E^2, \ (f(x_1) = f(x_2) \implies x_1 = x_2).$

- ▶ Propriété (caractérisation des surjections) : Les propositions suivantes sont équivalentes :
- (i) L'application f est surjective.
- (ii) Tout élément de F a au moins un antécédent par f.
- (iii) Pour tout $y \in F$, l'équation f(x) = y possède au moins une solution.
- (iv) $\forall y \in F, \exists x \in E, y = f(x).$
- ► Propriété (caractérisation des bijections) : Les propositions suivantes sont équivalentes :
- (i) L'application f est bijective.
- (ii) Tout élément de F a un et un seul antécédent par f.
- (iii) Pour tout $y \in F$, l'équation f(x) = y possède une unique solution.
- (iv) $\forall u \in F, \exists ! x \in E, y = f(x).$

■ Composition des applications

- ▶ Définition : L'application $h: E \longrightarrow G$ définie par : $\forall x \in E, h(x) = g[f(x)]$ est appelée composée de f par g et notée $g \circ f$.
- ▶ Définition et propriétés : La composition des applications « ∘ » est une opération associative mais non commutative en général : $(f \circ g) \circ h = f \circ (g \circ h)$ mais $g \circ f \neq f \circ g$ en général.
- ► Exemple : Composition des translations de vecteur du plan.

Propriétés (composée d'injections, surjections, bijections) : Soient $f \in F^E$ et $g \in G^F$.

- 1. Si f et g sont injectives, alors $g \circ f$ est injective.
- **2.** Si f et g sont surjective, alors $g \circ f$ est surjective.
- **3.** Si f et g sont bijectives, alors $g \circ f$ est bijective.

Propriétés : Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ des applications.

- **1.** Si $g \circ f$ est injective, alors f est injective.
- **2.** Si $g \circ f$ est surjective, alors g est surjective.

Application réciproque

- \blacktriangleright **Définition (Application réciproque) :** Soit f une bijection de E dans F. Alors, pour tout $y \in F$, il existe un unique élément $x \in E$ tel que y = f(x). On définit ainsi une application $f^{-1}: F \longrightarrow E$ qui est aussi bijective, et qu'on appelle application réciproque de f.
- **Exemple:** La fonction

$$f \mid \begin{array}{ccc} \mathbb{R}_+ & \longrightarrow & \mathbb{R}_+ \\ t & \longmapsto & t^2 \end{array}$$

est bijective et sa fonction réciproque est l'application

$$f^{-1} \left| \begin{array}{ccc} \mathbb{R}_+ & \longrightarrow & \mathbb{R}_+ \\ t & \longmapsto & \sqrt{t} \end{array} \right|.$$

Définition : Application identité

$$\operatorname{Id}_E \left| \begin{array}{ccc} E & \longrightarrow & E \\ x & \longmapsto & x \end{array} \right..$$

Propriété (caractérisation de la fonction réciproque) : Si $f: E \to F$ est une application, les deux propriétés suivantes sont équivalentes :

- 1. f est bijective de E sur F;
- **2.** Il existe une application $g: F \to E$ telle que $g \circ f = \mathrm{Id}_E \text{ et } f \circ g = \mathrm{Id}_F.$

De plus, si l'une des conditions est vérifiée, la fonction g est unique et est appelée fonction réciproque de f, notée f^{-1} .

- **Remarque**: On peut avoir $f \circ g = \mathrm{Id}_F$ ou $g \circ f = \mathrm{Id}_E$ sans que f et g soient bijectives.
- Corollaire:
 - 1. Si $f \in F^E$ est bijective, alors u^{-1} est bijective et
 - **2.** Si $u \in F^E$ et $v \in G^F$ sont deux applications bijectives, alors $(v \circ u)^{-1} = u^{-1} \circ v^{-1}$.

■ Images directes et réciproques d'ensembles

- ▶ Définition (Images directe et réciproque d'une partie) : Si $f \in F_E$, on définit :
 - $\forall A \in \mathcal{P}(E), f(A) = \{f(x), x \in A\}.$
 - $\forall B \in \mathcal{P}(F), f^{-1}(B) = \{x \in E \mid f(x) \in B\}.$
- ightharpoonup Propriétés : Soit $f: E \longrightarrow F$ une application et soient Aet B deux parties de E, C et D deux parties de F. On a alors:
- **1.** $f(A \cup B) = f(A) \cup f(B)$.
- **2.** $f(A \cap B) \subset f(A) \cap f(B)$.
- **3.** $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$. **4.** $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
- **5.** $f(f^{-1}(C)) \subset C$. **6.** $f^{-1}(f(A)) \supset A$.

■ Fonction indicatrice (ou caractéristique)

Définition: Soit $A \subset E$. La fonction indicatrice de A, ou encore fonction caractéristique de A, est la fonction de E dans $\{0,1\}$, notée $\mathbb{1}_A$ et définie par :

$$\mathbb{1}_A = \left\{ \begin{array}{ll} 1 & \text{si} & x \in A \\ 0 & \text{si} & x \notin A \end{array} \right.$$

- ightharpoonup Propriété : Si A et B sont deux parties de E, on a :
- **1.** pour l'intersection : $\mathbb{1}_{A \cap B} = \mathbb{1}_A \times \mathbb{1}_B$,
- **2.** pour la réunion : $\mathbb{1}_{A \cup B} = \sup(\mathbb{1}_A, \mathbb{1}_B) = \mathbb{1}_A + \mathbb{1}_B \mathbb{1}_A$
- **3.** pour le complémentaire : $\mathbb{1}_{\mathfrak{c}_E A} = 1 \mathbb{1}_A$.

▶ Remarque : Pour un ensemble fini, on a la relation : $\sum_{x \in E} \mathbb{1}_A(x) = \operatorname{card}(A).$

Propriété: L'application

$$\begin{array}{cccc} u & \mathcal{P}(E) & \longrightarrow & \mathcal{F}(E, \{0, 1\}) \\ A & \longmapsto & \mathbb{1}_A \end{array}$$

est une bijection.

■ Familles indexées

- ightharpoonup Définition : Si I est un ensemble quelconque, une application de I dans E est aussi appelée famille d'éléments de E indexée par I.
- ▶ **Notation**: L'utilisation du terme famille sous-entend que l'on utilise la notation indexée $(x_i)_{i\in I}$ au lieu de la notation fonctionnelle, bien qu'il s'agisse d'une application.
- ightharpoonup Exemple : Une suite d'éléments de E est une famille d'éléments de E indexée par \mathbb{N} : on la note $(u_n)_{i\in\mathbb{N}}$.
- **Vocabulaire**: Si I = [1,p], alors une famille d'éléments de E indexée par I est aussi appelée p-liste ou p-uplet.
- **Notation**: La famille $(x_i)_{i \in [\![1,p]\!]}$ se note couramment (x_1,\ldots,x_p) , et l'ensemble $\mathbb{R}^I=\mathbb{R}^{[1,p]}$ se note plus simplement \mathbb{R}^p .
- ▶ **Définition**: Si $J \subset I$, la famille $(x_i)_{i \in J}$ est appelée sousfamille de $(x_i)_{i \in I}$.
- Propriétés : Généralisation de l'union et de l'intersection aux familles de parties de E.
- ▶ Pour les parties désignées par un symbole

- ▶ Une colle comporte une question de cours choisie a priori parmi celles indiquées dans le programme de la semaine en cours (normalement, ± 15 min).
- ▶ Un cours non appris sera sanctionné par une note inférieure à 10 (même si l'exercice est fait correctement!).