Chapitre 3 Applications

■ Application réciproque

- ▶ Définition (Application réciproque) : Soit f une bijection de E dans F. Alors, pour tout $y \in F$, il existe un unique élément $x \in E$ tel que y = f(x). On définit ainsi une application $f^{-1}: F \longrightarrow E$ qui est aussi bijective, et qu'on appelle application réciproque de f.
- ► Exemple : La fonction

$$f \mid \begin{array}{ccc} \mathbb{R}_+ & \longrightarrow & \mathbb{R}_+ \\ t & \longmapsto & t^2 \end{array}$$

est bijective et sa fonction réciproque est l'application

$$f^{-1} \left| \begin{array}{ccc} \mathbb{R}_+ & \longrightarrow & \mathbb{R}_+ \\ t & \longmapsto & \sqrt{t} \end{array} \right.$$

► **Définition** : Application identité

$$\operatorname{Id}_E \left| \begin{array}{ccc} E & \longrightarrow & E \\ x & \longmapsto & x \end{array} \right..$$

Propriété (caractérisation de la fonction réciproque) : Si $f: E \to F$ est une application, les deux propriétés suivantes sont équivalentes :

- 1. f est bijective de E sur F;
- **2.** Il existe une application $g: F \to E$ telle que $g \circ f = \operatorname{Id}_E$ et $f \circ g = \operatorname{Id}_F$.

De plus, si l'une des conditions est vérifiée, la fonction g est unique et est appelée fonction réciproque de f, notée f^{-1} .

- ▶ Remarque : On peut avoir $f \circ g = \mathrm{Id}_F$ ou $g \circ f = \mathrm{Id}_E$ sans que f et g soient bijectives.
- ► Corollaire :
- 1. Si $f \in F^E$ est bijective, alors u^{-1} est bijective et $(u^{-1})^{-1} = u$.
- **2.** Si $u \in F^E$ et $v \in G^F$ sont deux applications bijectives, alors $(v \circ u)^{-1} = u^{-1} \circ v^{-1}$.

■ Images directes et réciproques d'ensembles

- ▶ Définition (Images directe et réciproque d'une partie) : F if $f \in F_E$, on définit :
 - $\forall A \in \mathcal{P}(E), f(A) = \{f(x), x \in A\}.$
 - $\forall B \in \mathcal{P}(F), f^{-1}(B) = \{x \in E \mid f(x) \in B\}.$
- ▶ Propriétés : Soit $f: E \longrightarrow F$ une application et soient A et B deux parties de E, C et D deux parties de F. On a alors :
- **1.** $f(A \cup B) = f(A) \cup f(B)$.
- **2.** $f(A \cap B) \subset f(A) \cap f(B)$.
- **3.** $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
- **4.** $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
- **5.** $f(f^{-1}(C)) \subset C$.
- **6.** $f^{-1}(f(A)) \supset A$.

■ Fonction indicatrice (ou caractéristique)

▶ **Définition**: Soit $A \subset E$. La fonction indicatrice de A, ou encore fonction caractéristique de A, est la fonction de E dans $\{0,1\}$, notée $\mathbb{1}_A$ et définie par :

$$\mathbb{1}_A = \left\{ \begin{array}{ll} 1 & \text{si} & x \in A \\ 0 & \text{si} & x \notin A \end{array} \right.$$

- ightharpoonup Propriété : Si A et B sont deux parties de E, on a :
 - **1.** pour l'intersection : $\mathbb{1}_{A \cap B} = \mathbb{1}_A \times \mathbb{1}_B$,
 - **2.** pour la réunion : $\mathbb{1}_{A \cup B} = \sup(\mathbb{1}_A, \mathbb{1}_B) = \mathbb{1}_A + \mathbb{1}_B \mathbb{1}_{A \cap B}$.
 - 3. pour le complémentaire : $\mathbb{1}_{G_{E}A} = 1 \mathbb{1}_{A}$.

▶ Remarque : Pour un ensemble fini, on a la relation : $\sum_{x \in E} \mathbb{1}_A(x) = \operatorname{card}(A).$

Propriété: L'application

$$u \left| \begin{array}{ccc} \mathcal{P}(E) & \longrightarrow & \mathcal{F}(E, \{0, 1\}) \\ A & \longmapsto & \mathbb{1}_A \end{array} \right.$$

est une bijection.

■ Familles indexées

- ▶ Définition : Si I est un ensemble quelconque, une application de I dans E est aussi appelée famille d'éléments de E indexée par I.
- ▶ Notation : L'utilisation du terme famille sous-entend que l'on utilise la notation indexée $(x_i)_{i \in I}$ au lieu de la notation fonctionnelle, bien qu'il s'agisse d'une application.
- ▶ Exemple : Une suite d'éléments de E est une famille d'éléments de E indexée par \mathbb{N} : on la note $(u_n)_{i\in\mathbb{N}}$.
- ▶ Vocabulaire : Si I = [1,p], alors une famille d'éléments de E indexée par I est aussi appelée p-liste ou p-uplet.
- ▶ Notation : La famille $(x_i)_{i \in [\![1,p]\!]}$ se note couramment (x_1, \ldots, x_p) , et l'ensemble $\mathbb{R}^I = \mathbb{R}^{[\![1,p]\!]}$ se note plus sim-

plement \mathbb{R}^p .

▶ **Définition**: Si $J \subset I$, la famille $(x_i)_{i \in J}$ est appelée sousfamille de $(x_i)_{i \in I}$. ightharpoonup Propriétés : Généralisation de l'union et de l'intersection aux familles de parties de E.

Chapitre 4 Relations

■ Relations binaires

▶ Définition : On appelle relation binaire $\mathcal R$ sur un ensemble E tout prédicat à deux variables défini sur l'ensemble $E \times E$.

▶ Exemples : $\langle \cdot \rangle \gg$, $\langle \cdot \rangle = \gg$ ou $\langle \cdot \rangle \sim$ sont des relations binaires

▶ Définition : On dit qu'une relation binaire $\mathcal R$ sur un ensemble E est :

(R) réflexive si elle vérifie :

$$\forall x \in E, \quad x \mathcal{R} y.$$

(S) symétrique si elle vérifie :

$$\forall (x,y) \in E^2, (x \mathcal{R} y \implies y \mathcal{R} x).$$

■ Relations d'équivalence

▶ **Définition**: Soit \mathcal{R} une relation binaire sur un ensemble E. On dit que \mathcal{R} est une relation d'équivalence si elle est réflexive, symétrique et transitive.

▶ Définition (classe d'équivalence, ensemble quotient) : Soit \mathcal{R} une relation d'équivalence sur un ensemble E.

• Pour tout $x \in E$, on appelle classe d'équivalence de x suivant \mathscr{R} l'ensemble $\widetilde{x} = \{y \in E \mid x\mathscr{R}y\}$. Une partie X de E est une classe d'équivalence s'il existe un $x \in E$ tel que $X = \widetilde{x}$; un tel x est alors appelé un représentant de X.

• Le sous-ensemble de $\mathscr{P}(E)$ constitué par les classes d'équivalence suivant \mathscr{R} s'appelle l'ensemble quotient de E par \mathscr{R} et est noté E/\mathscr{R} .

Propriété: Étant donné une relation d'équivalence \mathcal{R} sur un ensemble E, ainsi que deux éléments x et y de E, les propriétés suivantes sont équivalentes :

(i)
$$x\mathcal{R}y$$
 (ii) $y \in \widetilde{x}$ (iii) $\widetilde{x} = \widetilde{y}$.

(AS) antisymétrique si elle vérifie :

$$\forall (x,y) \in E^2, \quad \left(\left\{ \begin{array}{cc} x \mathscr{R} y \\ \text{et} \\ y \mathscr{R} x \end{array} \right. \Rightarrow x = y \right).$$

(T) transitive si elle vérifie :

$$\forall (x,y,z) \in E^3, \quad \left(\left\{ \begin{array}{cc} x \mathscr{R} y \\ \mathrm{et} \\ y \mathscr{R} x \end{array} \right. \right).$$

▶ Définition (partition) : On appelle partition d'un ensemble E, tout ensemble de parties de E non vides, deux à deux disjointes et dont la réunion est égale à E. Autrement dit, c'est une partie $\mathscr U$ de E telle que :

• $\forall A \in \mathcal{U}, \quad A \neq \emptyset,$

• $\forall (A,B) \in \mathscr{U}^2$, $A \neq B \implies A \cap B = \varnothing$,

$$\bullet \bigcup_{A \in \mathscr{U}} A = E.$$

Théorème (relation d'équivalence et partition) : Soit \mathcal{R} une relation d'équivalence sur un ensemble E. Alors E/\mathcal{R} est une partition de E.

■ Relations d'ordre

▶ Définition (relation d'ordre) : Soit \mathcal{R} une relation binaire sur un ensemble E.

On dit que \mathcal{R} est une $relation\ d'ordre$ si elle est réflexive, antisymétrique et transitive.

▶ Définition (ensemble ordonné) : On appelle ensemble ordonné tout couple (E, \preceq) où E est un ensemble non vide et où \preceq est une relation d'ordre sur cet ensemble.

On note $x \prec y$ la relation $(x \leq y) \land (x \neq y)$.

▶ **Définition**: Ordre total, ordre partiel.

▶ Définition (majorant, minorant) : Soit (E, \preceq) un ensemble ordonné et A une partie non vide de E.

• Un élément $m \in E$ est dit minorant de A si, pour tout $a \in A$, on a $m \leq a$.

• Un élément $M \in E$ est dit majorant de A si, pour tout $a \in A$, on a $a \prec M$.

• A est dite major'ee (resp. minor'ee) dans E s'il existe au moins un majorant (resp. un minorant) de A.

▶ Définition (maximum, minimum) : Soit (E, \preceq) un ensemble ordonné.

• Un élément $m \in E$ est appelé plus petit élément (ou minimum) de E si, pour tout $x \in E$, $m \leq x$.

Ouand il existe le minimum de E se note min(E) ou

Quand il existe, le minimum de E se note $\min(E)$ ou $\min E$.

• Un élément $M \in E$ est appelé plus grand élément (ou maximum) de E si, pour tout $x \in E$, $x \leq M$. Quand il existe, le maximum de E se note $\max(E)$ ou $\max E$.

▶ Remarque : le maximum (resp. minimum) d'une partie A de E est un majorant (resp. minorant) qui appartient à A

▶ Notation : Si $(x,y) \in \mathbb{R}^2$, les nombres réels $\max\{x,y\}$ et $\min\{x,y\}$ se notent respectivement $\max(x,y)$ et $\min(x,y)$.

▶ Définition (borne supérieure) : Soit (E, \preceq) un ensemble ordonné et A une partie non vide de E.

La borne supérieure de A dans E est le plus petit élément (s'il existe) de l'ensemble des majorants de A dans E.

On la note $\sup(A)$ ou $\sup_{x \in A}(x)$. On a, sous réserve d'existence :

$$\sup(A) = \min\{M \in E \mid \forall x \in A, x \leq M\}$$

▶ Définition (borne inférieure) : Se définit de manière analogue.

Propriété (caractérisation de la borne supérieure) : : Soit A une partie non vide d'un ensemble E totalement ordonné pour la relation \preceq .

Pour qu'un élément S de E soit la borne supérieure de A dans E, il faut et il suffit que les deux conditions suivantes soient vérifiées :

1.
$$\forall a \in A, a \leq S$$
;

2.
$$\forall b \in E : b \prec S \implies \exists a \in A : b \prec a.$$

▶ Propriété de la borne supérieure de \mathbb{R} : Toute partie non vide et majorée de l'ensemble des nombres réels \mathbb{R} possède une borne supérieure.

On dit que \mathbb{R} possède la propriété de la borne supérieure.

▶ Pour les parties désignées par un symbole

 \blacktriangleright Une colle comporte une question de cours choisie *a priori* parmi celles indiquées dans le programme de la semaine en cours (normalement, ± 15 min).

▶ Un cours non appris sera sanctionné par une note inférieure à 10 (même si l'exercice est fait correctement!).