T^{ale} spé Maths expertes J. BÉRARD

2025 - 2026

Lycée Saint-Augustin

TD 1 Notions de logique, ensembles

Notions de logique

Exercice 1 ($\bigstar \ \ \ \ \ \ \ \$ Énoncer pour chaque proposition P qui suit, la proposition $(\neg P)$.

- 1. S'il pleut, je prends mon parapluie.
- 2. Chaque été, il pleut au moins une journée en Bretagne.
- **3.** L'été dernier, il a plu tous les jours en Bretagne.
- 4. En Provence, il ne pleut jamais.
- 5. Dans la classe, il y a 16 filles et 18 garçon.
- **6.** Dans la classe, il y a autant de filles que de garçons.

Exercice 2 (★★☆☆) Les assertions suivantes sont-elles vraies ou fausses?

- 1. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y^2 = 1$
- **2.** $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y^2 = 1$

- 3. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y^2 = 1$
- **4.** $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y^2 = 1$

Exercice 3 ($\star\star$ $\dot{\approx}$) [obligatoire] Soient A, B, C et D des assertions. Démontrer les propositions suivantes (propriétés des connecteurs logiques) en utilisant les tables de vérité :

1. Associativité de « \wedge » et « \vee » :

$$A \wedge (B \wedge C) \iff (A \wedge B) \wedge C$$

$$A \vee (B \vee C) \iff (A \vee B) \vee C.$$

2. Transitivité de « \implies » :

$$((A \Longrightarrow B) \land (B \Longrightarrow C)) \Longrightarrow (A \Longrightarrow C)$$

3. Distributivité de « \wedge » sur « \vee » :

$$((A \land B) \lor (A \land C)) \implies (A \land (B \lor C))$$

4. Distributivité de « \vee » sur « \wedge » :

$$(A \lor (B \land C)) \implies ((A \lor B) \land (A \lor C))$$

Exercice 4 (★☆☆☆) | obligatoire | Lois de De Morgan

Soient A et B deux assertions. Montrer que :

- **1.** $\neg (A \land B) \iff (\neg A) \lor (\neg B)$
- **2.** $\neg (A \lor B) \iff (\neg A) \land (\neg B)$

Exercice 5 ($\bigstar \bigstar \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Rightarrow$) Soit une fonction $f : \mathbb{R} \to \mathbb{R}$. Exprimer à l'aide de quantificateurs les assertions suivantes :

- 1. La fonction f s'annule au moins une fois.
- **2.** La fonction f est la fonction nulle.
- **3.** La fonction f est constante.
- **4.** La fonction f est paire.

Exercice 6 ($\bigstar \star \overleftrightarrow{x} \overleftrightarrow{x}$) Peut-on compléter les phrases suivantes par le symbole \Rightarrow ? Le symbole \Leftarrow ? Les réponses devront être rigoureusement justifiées.

- **1.** $\forall x \in \mathbb{R}, (x > 1) \dots (e^x > 1)$
- **2.** $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (x > y) \dots (x^2 > y^2)$
- **3.** $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (x = y) \dots (\cos(x) = \cos(y))$
- **4.** $\forall m \in \mathbb{N}, (m \text{ pair}) \dots (m \text{ multiple de } 6)$
- **5.** $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (\cos(x) = \cos(y)) \dots (x^2 = y^2)$

Ensembles

Exercice 7 ($\bigstar \star \overleftrightarrow{\boxtimes}$) Soit E un ensemble et X et Y deux sous-ensembles de E. Simplifier les expressions suivantes :

1.
$$A = (X \cap Y) \cup (X \cap \overline{Y})$$

3.
$$C = (X \cap Y) \cup (X \cap \overline{Y}) \cup (\overline{X} \cap Y) \cup (\overline{X} \cap \overline{Y})$$

2.
$$B = (X \cup Y) \cap (X \cup \overline{Y})$$

4.
$$D = (X \cup Y) \cap (X \cup \overline{Y}) \cap (\overline{X} \cup Y) \cap (\overline{X} \cup \overline{Y})$$

Exercice 8 ($\bigstar \star \overleftrightarrow{x} \overleftrightarrow{x}$) Soit *E* un ensemble, et *A*, *B* deux sous-ensembles de *E*. Comparer les ensembles suivants :

- **1.** $\mathcal{P}(A \cup B)$ et $\mathcal{P}(A) \cup \mathcal{P}(B)$;
- **2.** $\mathcal{P}(A \setminus B)$ et $\mathcal{P}(A) \setminus \mathcal{P}(B)$.

Exercice 9 ($\star\star\star\star$) Montrer les égalités suivantes :

1.]
$$-1;1[=\bigcup_{n\in\mathbb{N}^*}\left[-1+\frac{1}{1+n}\;,\,1-\frac{1}{1+n}\right]$$

2.
$$[-1;1] = \bigcap_{n \in \mathbb{N}^*} \left] -1 - \frac{1}{1+n} , 1 + \frac{1}{1+n} \right[.$$

Exercice 10 ($\bigstar \bigstar \bigstar \circlearrowleft$) Soit *E* un ensemble. Pour tous sous-ensembles *A* et *B* de *E*, on pose $A \nabla B = \overline{A \cup B}$.

- 1. Soit A un sous-ensemble de E. Exprimez \overline{A} à l'aide de A et de l'opération ∇ .
- **2.** Soit A et B deux sous-ensembles de E, calculer et simplifier $(A\nabla A)\nabla(B\nabla B)$.
- 3. Soit A et B deux sous-ensembles de E. Exprimer $A \cup B$ et $A \cap B$ à l'aide de A, B et de la loi ∇ uniquement.

2

Remarque : cela signifie qu'il ne faut laisser ni union, ni intersection, ni complémentaire dans le résultat de cette question.