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Lycée Saint-Augustin
Correction du TD 11 Dérivation : compléments

Exercice 1 (kkycyy) Q.C.M. Pour chaque question de ce Q.C.M, il y a deuz réponses exactes sur
les 4 proposées.

1. On considére la fonction f définie par f(z) = v/1 — z2, et on note € sa courbe représentative dans
un repere orthonormé.

a) L’ensemble de définition 2 de f est égal a [—1,1].
b) f est dérivable en 1.
c) L’équation réduite de la tangente .7 & € en son point d’abscisse > est y = 3z — 1.

d) La courbe représentative 4" dans le repére orthonormé donné est un demi-cercle.

Réponses : a) et d).
— a)Vrai: 1-22>0 < z€[-1,1].
— b) Faux : lim,_,;- w = —oo (tangente verticale).
— ¢) Faux : f(@) =1et f’(@) = %‘//52/)2) = —V/3. L’équation est y — 3+ = —/3(z —
?) = y=—3z+2.
—d) Vrai:y=v1—-22 = 92> 422 =1avecy > 0.

\.

2. On considére la fonction polynéme du troisieme degré P : x — x2 — 3z + 2 et on désigne par € sa
courbe représentative dans un repere du plan.

a) f(1)=f(1)=0.

b) f est croissante sur l'intervalle [—2,0].

c) f(1) est le minimum de f sur R.

d) Le point A(0,2) est un point d’inflexion de %

Réponses : a) et d). Calculs : f/'(z) =322 —3=3(zx — 1)(z + 1). f"(z) = 6.
— a) Vrai: f(1)=1-3+2=0et f/(1) =33 =0.
— b) Faux : f décroit sur [—1,1], donc n’est pas croissante sur [—2,0] entier.
— ¢) Faux : lim,,_ f(z) = —oc0.

— d) Vrai: f”(x) s’annule en changeant de signe en z = 0, et f(0) = 2.

Exercice 2 (K¢ ¥c) Pour chacune des fonctions ci-apres, déterminer 'ensemble de définition et
calculer la dérivée.

1. a:z+— 23 cos(5xr + 1) 4. d:x— eVeitetl 6. g cos(2z)

2. b:x— 9" 7% =2
2342224 3z+4 5 f L z 7. h:z+— L

3.ciz—e A 22+ 1 sin(z)



1. D, =R. a'(x) = 32% cos(bz + 1) — 53 sin(5x + 1).
2. Dy =R. V(z) = —sin(z)e™=".
3. D, =R. d(z) = (322 + 4z + 3)e T2z +3+4,
2 1
4. Dy =R (car A < 0 pour le trinéme sous la racine). d'(z) = N R

Vx4 +1

5. D; =R. f'(z) = 1(z2 + 1) — z(2x) _ 1— 22

(z2 +1)2 (22 4+1)2°
6. Dg =R \ {_\/i’\/i} g'(m) _ =2 Sln(2$)(.(i:2—22))— 2x COS<2_{L‘)

1sin(z) — x cos(x) '

7. D =R\ {kn,k € Z}. W(z) = e

Exercice 3 (% y<y<ys) Soient f et g deux fonctions deux fois dérivables de R dans R. On pose h = go f.
Si x € R, donner une expression de h'’(z).

On a h'(z) = f'(z) x ¢'(f(x)). En dérivant un produit et une composée :

h'(z) = f"(2)g' (f(2)) + f'(z) x [f'(2)g" (f(2))] = " (2)g' (£ (2)) + (f'())*g" (f ().

Exercice 4 (k¥c¥r) Pour n € N, montrer que Vo € R, cos™ (2) = cos (z + =) .

e D

Par récurrence. Pour n = 0, cos(z) = cos(x).
Supposons la propriété vraie au rang n. Alors :

cos™ 1) (z) = (COSm))’ (z) = (cos(x + "7”))' = —sin(z + %ﬂ)-

Or —sin(X) = cos(X + F), d'ou :

1
cos(™* () = cos (x + % + g) = cos <x + W) )

Exercice 5 (W¥¢¥rYy) Dérivée d’une fonction paire, impaire, périodique
Soit f une fonction dérivable de R dans R.
1. On suppose [ paire. Que dire de f’7?
2. Méme question si f est impaire.

3. Méme question si f est périodique de période T', ot T' € RY .

1. f(—2)=f(zx) = —f'(—z) = f'(z) = f'(—z)=—f(x). f est impaire.
2. f(o2) = ~(&) —> —F/(—2) = —{'&) —> f'(—2) = £'@). f' et paire,
3. fla+T)=f(x) = f'(x+T)=f'(x). f est T-périodique.




Exercice 6 (¥yrvr) Recherche de maximum

Soit n dans N*. Calculer le maximum de la fonction f,, définie sur R par :

VeeRy, folz)=a"e "

fn est dérivable sur R,.

fi(z) =nz"te™® —z"e® = 2" e %(n — x).

Sur Ry, fI(x) est du signe de n — z. f,, est croissante sur [0,n] et décroissante sur [n, + oo[. Le

maximum est atteint en n :

max(f,) = fn(n) =n"e " = (ﬁ)n

Exercice 7 (k% kvs) Dérivées d’ordre n
Déterminer les dérivées d’ordre n (ot n € N*) des fonctions f et g suivantes :
1. f:x+— ze®.

2. g = sin.

1. Formule de Leibniz avec u(z) = z et v(z) = ¢®. Comme u®) = 0 pour k > 2 :

™ (z) = (%)™ + n(1)(e®)™ Y = ze® + ne® = (x + n)e®.

2. Comme pour le cosinus : ¢(™ (z) = sin (z+Z8).

Exercice 8 (k% <v¢) Fonctions & dérivée n-iéme nulle

Déterminer les fonctions de R dans R, n fois dérivables sur R et dont la dérivée n-iéme est identique-
ment nulle.

[ Ce sont les fonctions polynomiales de degré au plus n — 1.

Exercice 9 (kK k¥c) Soit n € N*. Calculer le maximum de la fonction f,, définie sur R par :

VeeRy, folz)=a"e "

[ Voir exercice 6 (identique). Le maximum est (n/e)™, atteint en = n. ]

Exercice 10 (%% Yvr) Pendule simple

Soient un pendule simple de masse m et de longueur ¢, 6 I’angle que fait le pendule avec la « verticale
descendante » ; alors 6 dépend du temps ¢ et obéit a 1’équation différentielle :

0" (t) + %Sin(ﬂ(t)) = 0.

L’énergie du pendule au temps ¢ est donnée par la formule :

me2’ (t)?

B(t) = "

—mglcos(0(t)).



Montrer que F est constante (conservation de I’énergie).

On dérive E par rapport au temps ¢ :

E'(t) = % <20/ (1)0" (t) — mgl(—sin(0(t)) - 0'(t))

E'(t) = me2' (t) [0“@) + %Sin(@(t))

Or, d’apres Iéquation différentielle, le terme entre crochets est nul. Donc E’(t) = 0, et F est
constante.

Exercice 11 (k&) Dérivée n-ieme de x — z2e®

Soit f la fonction définie sur R par f(z) = 22e®.

1. Pour tout entier n > 1, montrer qu’il existe deux suites (a,) et (b,) telles que
VzeR, fM(z)=(2®+anz+b,)e".

2. Expliciter () (z) en fonction de n et .

1. On dérive : f™(z) = (2 +an)e® + (22 +anz+by)e® = (x2 4 (an +2)z+ (ay +by))e®. On a
les récurrences a, 1 = an + 2 et by = an + by, avec ag = 0,bp = 0 (ou n = 1 directement).

2. Plus simple avec Leibniz : f™ (z) = 22(e")™ + n(2z)(e%) =1 4 2L (9)(e7)(n=2),
f™(z) =e® (z® + 2nz + n(n—1)).

Donc a,, = 2n et b, =n(n —1).

Exercice 12 (k%% 7r) Limites et taux d’accroissement

Soit f une fonction dérivable en a appartenant a un intervalle ouvert I.

1. Calculer la limite quand h tend vers 0 des fonctions suivantes :

(a+h)f(a)—af(a+h)

a) h— - .
b) h+— (a+ nh)f(a;l— af(a+ h), avec n € N*,

2. Calculer la limite quand z tend vers a de la fonction

@) - )
T—a '

1. a) af(a)+hf(f}ll)—af(a+h) _ f(a) _af(a+h})L—f(a) — f(a) _ af'(a).

b) De méme : af(a)+nhf(}fbl)7af(a+h) = nf(a)faf(aJrh});f(a) p— nf(a)—af’(a) (Attention
—
ici le terme variable f(a+ h) est le méme, seul le coeff devant f(a) change). Correction
du raisonnement pour b) si c¢’était f(a+mnh) : ce serait f(a) —naf’(a). Ici 'énoncé est
bien (a +nh)f(a).
2. On reconnait le taux d’accroissement de g(x) = e ® f(z) en a. ¢'(x) = —e *f(z) +e " f'(x).
Donc la limite est ¢’(a) = e *(f"(a) — f(a)).




Exercice 13 (k% %) Dérivée de la bijection réciproque

Soient I et J deux intervalles ouverts non vides. Soit f une bijection de I sur J ot f~!:J — I est
la bijection réciproque de f. Montrer que si f est dérivable sur I et que si, de plus, f’ ne s’annule pas sur
I, alors f~! est dérivable sur J et

vyeld, (f7Y)(y = W)

On part de l'identité Vy € J,f(f~1(y)) = y. f est dérivable et f~! est continue (admis pour une
bijection sur un intervalle). En dérivant la composée : (f~1)'(y) x f'(f~'(y)) = 1. Comme f’ ne

f(F=1y)

s’annule pas, on peut diviser : (f~1)'(y) =

Exercice 14 (k%% %) Méthode de la sécante

Soient deux réels a et b tels que a < b. On considére une fonction f continue, croissante strictement
et convexe sur [a,b] telle que f(a)f(b) < 0. On désigne par A et B les deux points de C; d’abscisses
respectives a et b.

1. Justifier I'existence d’un unique réel « €]a,b tel que f(a) = 0.
2. Déterminer une équation de la droite (AB).

3. En déduire que 'abscisse x1 du point d’intersection de la sécante (AB) avec la droite des abscisses

satisfait a b
—a
r1=a— ————7—f(a).

4. En réitérant ce procédé, nous considérons la suite (x,) définie sur N par son premier terme xo = a
et la relation de récurrence
b—x,

En utilisant la convexité de la fonction f, prouver que

VneN, z,11=z,—

VneN, z,<a.

En déduire le sens de variation de la suite (x,).
5. Justifier que (z,) converge vers le réel a.

6. Nous supposons que f : x — x> —4x — 2. Proposer un algorithme qui restitue une valeur approchée
d’une solution a € [2,3] de 'équation f(x) = 0.

1. f est continue et strictement croissante, f(a) < 0 et f(b) > 0. D’apres le théoréme de la
bijection (ou TVI strict), il existe un unique « €Ja,b| tel que f(a) = 0.

2. Pente m = W. Equation : y — f(a) = W(x —a).

3. On cherche z; tel que y = 0: —f(a) = %(ml —a) <= x1—a= —f(a)ﬁ.

D’ou le résultat.

4. Position : f est convexe, donc sa courbe est située au-dessous de ses sécantes. Sur [x,,,b], la
corde (M, B) est au-dessus de C;. Comme f est croissante et f(b) > 0, la corde coupe 'axe
des abscisses en un point x,,11 situé avant le point ot la courbe coupe 'axe (qui est «). Donc
Znt+1 < a. Par récurrence, x,, < a. Variation : f croissante et z, < a = f(x,) < 0.
Or 241 — 2 = —f(xn)ﬁ. Le ratio est positif (car b > z, et f(b) > f(xn)), et
—f(x,) > 0. Donc x,11 > . La suite est croissante.

5. (z,,) est croissante et majorée par a, donc elle converge vers £ €]a,«]. En passant & la limite
dans la récurrence, on obtient f(¢) = 0, donc £ = «.

6. Algorithme classique de la sécante (ou regula falst).




Exercice 15 (%% % %) Méthode de Newton

Soit f une fonction dérivable deux fois sur un intervalle I. Soient @ € I et b € I tels que a < b. Nous
supposouns :

— f(a) <0et f(b) >0,
— Vz €lab], f'(x) >0et f’(z) > 0.
1. Justifier que équation f(x) = 0 admet une solution unique « €]a,bl.
2. a) Soit 7 la tangente a la courbe Cy au points My d’abscisse xg = b. Déterminer P'abscisse z1 du
point d’intersection de 7Ty avec la droite des abscisses.
b) Soit 77 la tangente a la courbe Cs au point M; d’abscisse x1. Déterminer 'abscisse x2 du point
d’intersection de 77 avec la droite des abscisses.
3. En réitérant ce processus, pour tout entier naturel n, nous désignons par :
— 7T, la tangente & Cy au point M,, d’abscisse x,
— x,41 abscisse du point d’intersection de 7, avec la droite des abscisses.
Montrer que, le réel xg = b étant donné, la suite (z,,) est définie par la relation de récurrence

f(an)

VneN, z,41 =1z, —

4. a) Justifier que la suite (z,,) est minorée par «.
b) Quel est le sens de variation de cette suite ?
c) La suite (x,) converge vers le réel o. Expliquez pourquoi.

1. f strictement croissante (f’ > 0) et continue sur [a,b], change de signe. TVI strict —
unique «.
2. BEquation tangente en z,, : y = f'(z,,)(z—2y,)+ f(x,). Intersection axe des abscisses (y = 0) :
B

0= f'(zn)(@nt1—Tn)+f(Tn) = Tpy1 = xn—;,((x )). Cela prouve la question 3 directement
par récurrence.

3. (Voir ci-dessus).

4. a) f est convexe (f” > 0), donc sa courbe est au-dessus de ses tangentes. Ainsi 0 =
f@nt1)+(-..) = f(znt+1) > 0 (par position relative tangente/courbe, 'annulation
de la tangente se fait "avant" ’annulation de la courbe). Plus rigoureusement : f(z) >
f(zn) + f(xn)(x — 2p). En © = 2,41, le membre de droite est nul. Donc f(z,41) >
0 = f(a). Comme f croissante, Tp41 > .

b) Tpi1 — Ty = —]{,((Z’:)). Comme z,, > «, f(z,) > 0. Et f/ > 0. Donc a1 — z, < 0. La
suite est décroissante.

c) Décroissante et minorée par «, elle converge vers ¢. Les limites donnent ¢ = ¢ —

FO/F'(0) = fFlO)=0 = (=o.

Exercice 16 (%% % %) La fonction sinus cardinal

La fonction sinus cardinal, notée ici sinc, est définie par :

sinc(0) =1
sin(x) .

Vo eR* sinc(z) = .

Etudier la parité de sinc.
Montrer que sinc est continue en 0. Quelle est sa limite en oo ?
Pour = € R*, calculer sinc’(x).

oW

i 7T
Montrer que, pour tout n € Z, la fonction tan admet un unique point fixe sur 'intervalle } T — o nT + 5
que 'on note x,,.

5. Montrer que les x,, pour n € Z sont les points en lesquels sinc’ s’annule.



sin(—z)

__ —sinx
—x

= sinc(z). Fonction paire.

2. limg_,q S2&

1/|z| — 0.

3. Slnc/(x) — ZCOSz;SIHCE'

4. Sur I, =|nm — 7/2,nm + 7/2], la fonction x + tanx — x est strictement croissante (dérivée
tan? x > 0). Limites —oco et +o00 aux bornes. Unique zéro x,, (bijection).

= 1 = sinc(0) (taux d’accroissement du sinus). Continue. En oo, [sinc(x)| <

5. sinc’(z) =0 <= zcosz =sinz <= x = tanz (pour coszx # 0, ce qui est vrai aux points
d’annulation car sinon sinz = 0 et # = 0, mais ici on est sur R*). 0 est aussi solution de
zcosx —sinz = 0.

Exercice 17 (%% % %) Inégalités des accroissements finis

Soit f une fonction continue sur [a,b], dérivable sur ]a,b[, avec a < b.

1. Nous supposons qu'il existe deux réels m et M tels que Vz €]a,b[, m < f'(z) < M. Prouver que
m < L0t < pp

2. Une application. Justifier que pour tout entier n > 1, ﬁ <vVn+1l-—yn< ﬁ

3. Nous supposons qu'il existe un réel k£ > 0 tel que V €]a,b[, |f'(x)| < k. Montrer que | f(b)— f(a)| <
k(b —a).

4. Une application. Justifier que Vo € R, [sinz| < |z|.

1. C’est I'Inégalité des Accroissements Finis (IAF). On applique le TAF : il existe ¢ €]a,b| tel
que w = f'(c). Or m < f'(c) < M.

2. On pose f(z) = & sur [n,n + 1. f/(z) = ﬁ Pour z € [n,n + 1], f' décroit, donc
2\/71m < fl(z) < ﬁ On applique le 1.

3. Corollaire immédiat du 1 avec m = —k et M = k. —k < w <k = ‘W <k.

4. On applique & f(¢t) = sint sur [0,z] (ou [,0]). |f'(¢)| = |cost| < 1. Donc |sinz — sin 0| <
1-|lz —0] = |sinz| < |z|.

Exercice 18 (%% % %) Méthode du point fixe
Soient a et b deux réels tels que a < b et f une fonction continue sur [a,b], dérivable sur l'intervalle
Ja,b[. Nous supposons
— Vzelabd], f(z)e€]lab].
— 3k €]0,1[, Yz €lab], |f'(z)] < k.
1. Montrer que I'équation f(z) = x admet une solution unique « € [a,b)].

2. On considére la suite (z,) définie sur N par son premier terme zy € [a,b] et par la relation de
récurrence Tn41 = f(x,). Justifier que, pour tout entier naturel n,
a) z, € [a,b].
b) |zn41 —af < klz, — af.

3. En déduire Vn € N, |z, — o| < k™|zo — «|. La suite (z,,) converge-t-elle ?

1. Existence : Posons g(z) = f(z) — 2. g(a) = f(a) —a >0et g(b) = f(b) —b<0. TVI =
existence. Unicité : Si f(z) = z et f(y) =y, alors [z —y| = | f(z) — f(v)| < k| —y|. Comme
k < 1, cela impose |z —y| = 0.

2. a) Par récurrence immédiate car f([a,b]) C [a,b].
b) D’aprés 'TAF : |f(z,) — f(@)| < k|z, — | car |f/]| < k. Or f(a) = a.

3. Par récurrence : |z, — a| < k|lz,—1 —a| < -+ < E"xg — af. Comme 0 < k < 1, imk™ =0,




l donc x,, — a.

Exercice 19 (k%% %) Méthode du point fixe. Etude d’un exemple

Soit f la fonction définie sur R par f(z) = 1_7_%

1 1
1. Justifier que Vz € {5,1} , flx) e {571}-

1
2. Montrer que I’équation f(z) = z admet une solution unique « € {5,1} .

Ve

1
3. Prouver que, pour tout réel x € {5,1}, 0< f'(z) <k, en posant k = ———

(Ve+1)*

4. Etude de la convergence de tup4+1 = f(up).

1. f est strictement croissante (f > 0). f(1/2) ~ 0.62 > 0.5 et f(1) =~ 0.73 < 1. Donc
I'intervalle est stable.

2. Résulte de l'exercice précédent (stabilité + dérivée bornée strictement par 17 A vérifier au

3).
3. fl(z) = (He;)z. f” s’annule en 0 et est négative sur [1/2,1]. Donc f’ est décroissante sur
cet intervalle. Le max de f’ est en 1/2 : f/(1/2) = (14?255)2 = (1+\/jé)2 ~ 0.23. On a bien

1| <k=~023<1.

4. Les hypothéses de I'exercice précédent sont vérifiées. La suite converge vers a.




