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Correction du TD 11 Dérivation : compléments

Exercice 1 (8999) Q.C.M. Pour chaque question de ce Q.C.M, il y a deux réponses exactes sur
les 4 proposées.

1. On considère la fonction f définie par f(x) =
√

1 − x2, et on note C sa courbe représentative dans
un repère orthonormé.

a) L’ensemble de définition D de f est égal à [−1,1].
b) f est dérivable en 1.

c) L’équation réduite de la tangente T à C en son point d’abscisse
√

3
2 est y =

√
3x − 1.

d) La courbe représentative C dans le repère orthonormé donné est un demi-cercle.

Réponses : a) et d).
— a) Vrai : 1 − x2 ⩾ 0 ⇐⇒ x ∈ [−1,1].
— b) Faux : limx→1−

f(x)−f(1)
x−1 = −∞ (tangente verticale).

— c) Faux : f(
√

3
2 ) = 1

2 et f ′(
√

3
2 ) = −2(

√
3/2)

2(1/2) = −
√

3. L’équation est y − 1
2 = −

√
3(x −

√
3

2 ) ⇐⇒ y = −
√

3x + 2.
— d) Vrai : y =

√
1 − x2 =⇒ y2 + x2 = 1 avec y ⩾ 0.

2. On considère la fonction polynôme du troisième degré P : x 7−→ x3 − 3x + 2 et on désigne par C sa
courbe représentative dans un repère du plan.

a) f(1) = f ′(1) = 0.
b) f est croissante sur l’intervalle [−2,0].
c) f(1) est le minimum de f sur R.
d) Le point A(0,2) est un point d’inflexion de C .

Réponses : a) et d). Calculs : f ′(x) = 3x2 − 3 = 3(x − 1)(x + 1). f ′′(x) = 6x.
— a) Vrai : f(1) = 1 − 3 + 2 = 0 et f ′(1) = 3 − 3 = 0.
— b) Faux : f décroît sur [−1,1], donc n’est pas croissante sur [−2,0] entier.
— c) Faux : limx→−∞ f(x) = −∞.
— d) Vrai : f ′′(x) s’annule en changeant de signe en x = 0, et f(0) = 2.

Exercice 2 (8999) Pour chacune des fonctions ci-après, déterminer l’ensemble de définition et
calculer la dérivée.

1. a : x 7−→ x3 cos(5x + 1)
2. b : x 7−→ ecos x

3. c : x 7−→ ex3+2x2+3x+4

4. d : x 7−→ e
√

x2+x+1

5. f : x 7−→ x

x2 + 1

6. g : x 7−→ cos(2x)
x2 − 2

7. h : x 7−→ x

sin(x)
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1. Da = R. a′(x) = 3x2 cos(5x + 1) − 5x3 sin(5x + 1).
2. Db = R. b′(x) = − sin(x)ecos x.
3. Dc = R. c′(x) = (3x2 + 4x + 3)ex3+2x2+3x+4.

4. Dd = R (car ∆ < 0 pour le trinôme sous la racine). d′(x) = 2x + 1
2
√

x2 + x + 1
e

√
x2+x+1.

5. Df = R. f ′(x) = 1(x2 + 1) − x(2x)
(x2 + 1)2 = 1 − x2

(x2 + 1)2 .

6. Dg = R \ {−
√

2,
√

2}. g′(x) = −2 sin(2x)(x2 − 2) − 2x cos(2x)
(x2 − 2)2 .

7. Dh = R \ {kπ,k ∈ Z}. h′(x) = 1 sin(x) − x cos(x)
sin2(x)

.

Exercice 3 (8999) Soient f et g deux fonctions deux fois dérivables de R dans R. On pose h = g◦f .
Si x ∈ R, donner une expression de h′′(x).

On a h′(x) = f ′(x) × g′(f(x)). En dérivant un produit et une composée :

h′′(x) = f ′′(x)g′(f(x)) + f ′(x) × [f ′(x)g′′(f(x))] = f ′′(x)g′(f(x)) + (f ′(x))2g′′(f(x)).

Exercice 4 (8999) Pour n ∈ N, montrer que ∀ x ∈ R, cos(n)(x) = cos
(
x + nπ

2
)

.

Par récurrence. Pour n = 0, cos(x) = cos(x).
Supposons la propriété vraie au rang n. Alors :

cos(n+1)(x) =
Ä
cos(n)

ä′
(x) =

(
cos(x + nπ

2 )
)′

= − sin(x + nπ

2 ).

Or − sin(X) = cos(X + π
2 ), d’où :

cos(n+1)(x) = cos
(

x + nπ

2 + π

2

)
= cos

Å
x + (n + 1)π

2

ã
.

Exercice 5 (8999) Dérivée d’une fonction paire, impaire, périodique

Soit f une fonction dérivable de R dans R.
1. On suppose f paire. Que dire de f ′ ?
2. Même question si f est impaire.
3. Même question si f est périodique de période T , où T ∈ R∗

+.

1. f(−x) = f(x) =⇒ −f ′(−x) = f ′(x) =⇒ f ′(−x) = −f ′(x). f ′ est impaire.
2. f(−x) = −f(x) =⇒ −f ′(−x) = −f ′(x) =⇒ f ′(−x) = f ′(x). f ′ est paire.
3. f(x + T ) = f(x) =⇒ f ′(x + T ) = f ′(x). f ′ est T -périodique.
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Exercice 6 (8999) Recherche de maximum

Soit n dans N∗. Calculer le maximum de la fonction fn définie sur R+ par :

∀ x ∈ R+, fn(x) = xne−x.

fn est dérivable sur R+.

f ′
n(x) = nxn−1e−x − xne−x = xn−1e−x(n − x).

Sur R+, f ′
n(x) est du signe de n − x. fn est croissante sur [0,n] et décroissante sur [n, + ∞[. Le

maximum est atteint en n :

max(fn) = fn(n) = nne−n =
(n

e

)n

.

Exercice 7 (8899) Dérivées d’ordre n

Déterminer les dérivées d’ordre n (où n ∈ N∗) des fonctions f et g suivantes :
1. f : x 7−→ xex.
2. g = sin.

1. Formule de Leibniz avec u(x) = x et v(x) = ex. Comme u(k) = 0 pour k ≥ 2 :

f (n)(x) = x(ex)(n) + n(1)(ex)(n−1) = xex + nex = (x + n)ex.

2. Comme pour le cosinus : g(n)(x) = sin
(
x + nπ

2
)
.

Exercice 8 (8899) Fonctions à dérivée n-ième nulle

Déterminer les fonctions de R dans R, n fois dérivables sur R et dont la dérivée n-ième est identique-
ment nulle.

Ce sont les fonctions polynomiales de degré au plus n − 1.

Exercice 9 (8899) Soit n ∈ N∗. Calculer le maximum de la fonction fn définie sur R+ par :

∀ x ∈ R+, fn(x) = xne−x.

Voir exercice 6 (identique). Le maximum est (n/e)n, atteint en x = n.

Exercice 10 (8899) Pendule simple

Soient un pendule simple de masse m et de longueur ℓ, θ l’angle que fait le pendule avec la « verticale
descendante » ; alors θ dépend du temps t et obéit à l’équation différentielle :

θ′′(t) + g

ℓ
sin(θ(t)) = 0.

L’énergie du pendule au temps t est donnée par la formule :

E(t) = mℓ2θ′(t)2

2 − mgℓ cos(θ(t)).
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Montrer que E est constante (conservation de l’énergie).

On dérive E par rapport au temps t :

E′(t) = mℓ2

2 · 2θ′(t)θ′′(t) − mgℓ(− sin(θ(t)) · θ′(t))

E′(t) = mℓ2θ′(t)
[
θ′′(t) + g

ℓ
sin(θ(t))

]
Or, d’après l’équation différentielle, le terme entre crochets est nul. Donc E′(t) = 0, et E est
constante.

Exercice 11 (8889) Dérivée n-ième de x 7−→ x2ex

Soit f la fonction définie sur R par f(x) = x2ex.
1. Pour tout entier n ⩾ 1, montrer qu’il existe deux suites (an) et (bn) telles que

∀ x ∈ R, f (n)(x) = (x2 + anx + bn)ex.

2. Expliciter f (n)(x) en fonction de n et x.

1. On dérive : f (n+1)(x) = (2x+an)ex +(x2 +anx+bn)ex = (x2 +(an +2)x+(an +bn))ex. On a
les récurrences an+1 = an + 2 et bn+1 = an + bn, avec a0 = 0,b0 = 0 (ou n = 1 directement).

2. Plus simple avec Leibniz : f (n)(x) = x2(ex)(n) + n(2x)(ex)(n−1) + n(n−1)
2 (2)(ex)(n−2).

f (n)(x) = ex
(
x2 + 2nx + n(n − 1)

)
.

Donc an = 2n et bn = n(n − 1).

Exercice 12 (8889) Limites et taux d’accroissement

Soit f une fonction dérivable en a appartenant à un intervalle ouvert I.
1. Calculer la limite quand h tend vers 0 des fonctions suivantes :

a) h 7−→ (a + h)f(a) − af(a + h)
h

.

b) h 7−→ (a + nh)f(a) − af(a + h)
h

, avec n ∈ N∗.

2. Calculer la limite quand x tend vers a de la fonction

x 7−→ e−af(x) − e−xf(a)
x − a

.

1. a) af(a)+hf(a)−af(a+h)
h = f(a) − a f(a+h)−f(a)

h −−−→
h→0

f(a) − af ′(a).

b) De même : af(a)+nhf(a)−af(a+h)
h = nf(a)−a f(a+h)−f(a)

h −−−→
h→0

nf(a)−af ′(a) (Attention
ici le terme variable f(a + h) est le même, seul le coeff devant f(a) change). Correction
du raisonnement pour b) si c’était f(a + nh) : ce serait f(a) − naf ′(a). Ici l’énoncé est
bien (a + nh)f(a).

2. On reconnaît le taux d’accroissement de g(x) = e−xf(x) en a. g′(x) = −e−xf(x)+e−xf ′(x).
Donc la limite est g′(a) = e−a(f ′(a) − f(a)).
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Exercice 13 (8889) Dérivée de la bijection réciproque

Soient I et J deux intervalles ouverts non vides. Soit f une bijection de I sur J où f−1 : J −→ I est
la bijection réciproque de f . Montrer que si f est dérivable sur I et que si, de plus, f ′ ne s’annule pas sur
I, alors f−1 est dérivable sur J et

∀ y ∈ J, (f−1)′(y) = 1
f ′
(
f−1(y)

) .

On part de l’identité ∀ y ∈ J,f(f−1(y)) = y. f est dérivable et f−1 est continue (admis pour une
bijection sur un intervalle). En dérivant la composée : (f−1)′(y) × f ′(f−1(y)) = 1. Comme f ′ ne
s’annule pas, on peut diviser : (f−1)′(y) = 1

f ′(f−1(y)) .

Exercice 14 (8888) Méthode de la sécante

Soient deux réels a et b tels que a < b. On considère une fonction f continue, croissante strictement
et convexe sur [a,b] telle que f(a)f(b) < 0. On désigne par A et B les deux points de Cf d’abscisses
respectives a et b.

1. Justifier l’existence d’un unique réel α ∈]a,b[ tel que f(α) = 0.
2. Déterminer une équation de la droite (AB).
3. En déduire que l’abscisse x1 du point d’intersection de la sécante (AB) avec la droite des abscisses

satisfait à
x1 = a − b − a

f(b) − f(a)f(a).

4. En réitérant ce procédé, nous considérons la suite (xn) définie sur N par son premier terme x0 = a
et la relation de récurrence

∀ n ∈ N, xn+1 = xn − b − xn

f(b) − f(xn)f(xn).

En utilisant la convexité de la fonction f , prouver que

∀ n ∈ N, xn ⩽ α.

En déduire le sens de variation de la suite (xn).
5. Justifier que (xn) converge vers le réel α.
6. Nous supposons que f : x 7−→ x3 −4x−2. Proposer un algorithme qui restitue une valeur approchée

d’une solution a ∈ [2,3] de l’équation f(x) = 0.

1. f est continue et strictement croissante, f(a) < 0 et f(b) > 0. D’après le théorème de la
bijection (ou TVI strict), il existe un unique α ∈]a,b[ tel que f(α) = 0.

2. Pente m = f(b)−f(a)
b−a . Équation : y − f(a) = f(b)−f(a)

b−a (x − a).

3. On cherche x1 tel que y = 0 : −f(a) = f(b)−f(a)
b−a (x1 − a) ⇐⇒ x1 − a = −f(a) b−a

f(b)−f(a) .
D’où le résultat.

4. Position : f est convexe, donc sa courbe est située au-dessous de ses sécantes. Sur [xn,b], la
corde (MnB) est au-dessus de Cf . Comme f est croissante et f(b) > 0, la corde coupe l’axe
des abscisses en un point xn+1 situé avant le point où la courbe coupe l’axe (qui est α). Donc
xn+1 ≤ α. Par récurrence, xn ≤ α. Variation : f croissante et xn ≤ α =⇒ f(xn) ≤ 0.
Or xn+1 − xn = −f(xn) b−xn

f(b)−f(xn) . Le ratio est positif (car b > xn et f(b) > f(xn)), et
−f(xn) ≥ 0. Donc xn+1 ≥ xn. La suite est croissante.

5. (xn) est croissante et majorée par α, donc elle converge vers ℓ ∈]a,α]. En passant à la limite
dans la récurrence, on obtient f(ℓ) = 0, donc ℓ = α.

6. Algorithme classique de la sécante (ou regula falsi).
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Exercice 15 (8888) Méthode de Newton
Soit f une fonction dérivable deux fois sur un intervalle I. Soient a ∈ I et b ∈ I tels que a < b. Nous

supposons :
— f(a) < 0 et f(b) > 0,
— ∀ x ∈ [a,b], f ′(x) > 0 et f ′′(x) > 0.
1. Justifier que l’équation f(x) = 0 admet une solution unique α ∈]a,b[.
2. a) Soit T0 la tangente à la courbe Cf au points M0 d’abscisse x0 = b. Déterminer l’abscisse x1 du

point d’intersection de T0 avec la droite des abscisses.
b) Soit T1 la tangente à la courbe Cf au point M1 d’abscisse x1. Déterminer l’abscisse x2 du point

d’intersection de T1 avec la droite des abscisses.
3. En réitérant ce processus, pour tout entier naturel n, nous désignons par :

— Tn la tangente à Cf au point Mn d’abscisse xn,
— xn+1 l’abscisse du point d’intersection de Tn avec la droite des abscisses.

Montrer que, le réel x0 = b étant donné, la suite (xn) est définie par la relation de récurrence

∀ n ∈ N, xn+1 = xn − f(xn)
f ′(xn) .

4. a) Justifier que la suite (xn) est minorée par α.
b) Quel est le sens de variation de cette suite ?
c) La suite (xn) converge vers le réel α. Expliquez pourquoi.

1. f strictement croissante (f ′ > 0) et continue sur [a,b], change de signe. TVI strict =⇒
unique α.

2. Équation tangente en xn : y = f ′(xn)(x−xn)+f(xn). Intersection axe des abscisses (y = 0) :
0 = f ′(xn)(xn+1−xn)+f(xn) =⇒ xn+1 = xn− f(xn)

f ′(xn) . Cela prouve la question 3 directement
par récurrence.

3. (Voir ci-dessus).
4. a) f est convexe (f ′′ > 0), donc sa courbe est au-dessus de ses tangentes. Ainsi 0 =

f(xn+1) + (. . . ) =⇒ f(xn+1) ≥ 0 (par position relative tangente/courbe, l’annulation
de la tangente se fait "avant" l’annulation de la courbe). Plus rigoureusement : f(x) ≥
f(xn) + f ′(xn)(x − xn). En x = xn+1, le membre de droite est nul. Donc f(xn+1) ≥
0 = f(α). Comme f croissante, xn+1 ≥ α.

b) xn+1 − xn = − f(xn)
f ′(xn) . Comme xn ≥ α, f(xn) ≥ 0. Et f ′ > 0. Donc xn+1 − xn ≤ 0. La

suite est décroissante.
c) Décroissante et minorée par α, elle converge vers ℓ. Les limites donnent ℓ = ℓ −

f(ℓ)/f ′(ℓ) =⇒ f(ℓ) = 0 =⇒ ℓ = α.

Exercice 16 (8888) La fonction sinus cardinal
La fonction sinus cardinal, notée ici sinc, est définie par :sinc(0) = 1

∀ x ∈ R∗, sinc(x) = sin(x)
x

.

1. Étudier la parité de sinc.
2. Montrer que sinc est continue en 0. Quelle est sa limite en ±∞ ?
3. Pour x ∈ R∗, calculer sinc′(x).

4. Montrer que, pour tout n ∈ Z, la fonction tan admet un unique point fixe sur l’intervalle
]
nπ − π

2 ,nπ + π

2

[
que l’on note xn.

5. Montrer que les xn pour n ∈ Z sont les points en lesquels sinc′ s’annule.
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1. sin(−x)
−x = − sin x

−x = sinc(x). Fonction paire.
2. limx→0

sin x
x = 1 = sinc(0) (taux d’accroissement du sinus). Continue. En ±∞, |sinc(x)| ≤

1/|x| → 0.
3. sinc′(x) = x cos x−sin x

x2 .
4. Sur In =]nπ − π/2,nπ + π/2[, la fonction x 7→ tan x − x est strictement croissante (dérivée

tan2 x > 0). Limites −∞ et +∞ aux bornes. Unique zéro xn (bijection).
5. sinc′(x) = 0 ⇐⇒ x cos x = sin x ⇐⇒ x = tan x (pour cos x ̸= 0, ce qui est vrai aux points

d’annulation car sinon sin x = 0 et x = 0, mais ici on est sur R∗). 0 est aussi solution de
x cos x − sin x = 0.

Exercice 17 (8888) Inégalités des accroissements finis
Soit f une fonction continue sur [a,b], dérivable sur ]a,b[, avec a < b.

1. Nous supposons qu’il existe deux réels m et M tels que ∀ x ∈]a,b[, m ⩽ f ′(x) ⩽ M. Prouver que
m ⩽ f(b)−f(a)

b−a ⩽ M.

2. Une application. Justifier que pour tout entier n ⩾ 1, 1
2

√
n+1 ⩽

√
n + 1 −

√
n ⩽ 1

2
√

n
.

3. Nous supposons qu’il existe un réel k > 0 tel que ∀ x ∈]a,b[, |f ′(x)| ⩽ k. Montrer que |f(b)−f(a)| ⩽
k(b − a).

4. Une application. Justifier que ∀ x ∈ R, |sin x| ≤ |x|.

1. C’est l’Inégalité des Accroissements Finis (IAF). On applique le TAF : il existe c ∈]a,b[ tel
que f(b)−f(a)

b−a = f ′(c). Or m ≤ f ′(c) ≤ M .
2. On pose f(x) =

√
x sur [n,n + 1]. f ′(x) = 1

2
√

x
. Pour x ∈ [n,n + 1], f ′ décroît, donc

1
2

√
n+1 ≤ f ′(x) ≤ 1

2
√

n
. On applique le 1.

3. Corollaire immédiat du 1 avec m = −k et M = k. −k ≤ f(b)−f(a)
b−a ≤ k ⇐⇒

∣∣∣ f(b)−f(a)
b−a

∣∣∣ ≤ k.

4. On applique à f(t) = sin t sur [0,x] (ou [x,0]). |f ′(t)| = | cos t| ≤ 1. Donc | sin x − sin 0| ≤
1 · |x − 0| =⇒ | sin x| ≤ |x|.

Exercice 18 (8888) Méthode du point fixe
Soient a et b deux réels tels que a < b et f une fonction continue sur [a,b], dérivable sur l’intervalle

]a,b[. Nous supposons
— ∀ x ∈ [a,b], f(x) ∈ [a,b].
— ∃ k ∈]0,1[, ∀ x ∈]a,b[, |f ′(x)| ⩽ k.
1. Montrer que l’équation f(x) = x admet une solution unique α ∈ [a,b].
2. On considère la suite (xn) définie sur N par son premier terme x0 ∈ [a,b] et par la relation de

récurrence xn+1 = f(xn). Justifier que, pour tout entier naturel n,
a) xn ∈ [a,b].
b) |xn+1 − α| < k|xn − α|.

3. En déduire ∀ n ∈ N, |xn − α| ⩽ kn|x0 − α|. La suite (xn) converge-t-elle ?

1. Existence : Posons g(x) = f(x) − x. g(a) = f(a) − a ≥ 0 et g(b) = f(b) − b ≤ 0. TVI =⇒
existence. Unicité : Si f(x) = x et f(y) = y, alors |x−y| = |f(x)−f(y)| ≤ k|x−y|. Comme
k < 1, cela impose |x − y| = 0.

2. a) Par récurrence immédiate car f([a,b]) ⊂ [a,b].
b) D’après l’IAF : |f(xn) − f(α)| ≤ k|xn − α| car |f ′| ≤ k. Or f(α) = α.

3. Par récurrence : |xn − α| ≤ k|xn−1 − α| ≤ · · · ≤ kn|x0 − α|. Comme 0 < k < 1, lim kn = 0,
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donc xn → α.

Exercice 19 (8888) Méthode du point fixe. Étude d’un exemple

Soit f la fonction définie sur R par f(x) = ex

1+ex .

1. Justifier que ∀ x ∈
ï1

2 ,1
ò

, f(x) ∈
ï1

2 ,1
ò
.

2. Montrer que l’équation f(x) = x admet une solution unique α ∈
ï1

2 ,1
ò
.

3. Prouver que, pour tout réel x ∈
ï1

2 ,1
ò
, 0 ⩽ f ′(x) ⩽ k, en posant k =

√
e

(
√

e + 1)2 .

4. Étude de la convergence de un+1 = f(un).

1. f est strictement croissante (f ′ > 0). f(1/2) ≈ 0.62 ≥ 0.5 et f(1) ≈ 0.73 ≤ 1. Donc
l’intervalle est stable.

2. Résulte de l’exercice précédent (stabilité + dérivée bornée strictement par 1 ? À vérifier au
3).

3. f ′(x) = ex

(1+ex)2 . f ′′ s’annule en 0 et est négative sur [1/2,1]. Donc f ′ est décroissante sur
cet intervalle. Le max de f ′ est en 1/2 : f ′(1/2) = e0.5

(1+e0.5)2 =
√

e
(1+

√
e)2 ≈ 0.23. On a bien

|f ′| ≤ k ≈ 0.23 < 1.
4. Les hypothèses de l’exercice précédent sont vérifiées. La suite converge vers α.
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