

Lycée Saint-Augustin

TD 3 Applications

Correspondences, fonctions, applications

Exercice 1 (★★☆☆)

- **1.** Si $\Gamma = \{(t^2, t) \mid t \in \mathbb{R}\}$, le triplet $(\mathbb{R}_+, \mathbb{R}, \Gamma)$ est-il une application?
- **2.** Si $\Gamma = \{(t^2,t) \mid t \in \mathbb{R}_+\}$, le triplet $(\mathbb{R},\mathbb{R}_+,\Gamma)$ est-il une application?

Injections, surjections, bijections

Exercice 2 ($\star\star$

1.
$$f_1 \mid 0, +\infty[\longrightarrow \mathbb{R}_+ \\ x \longmapsto x + \frac{1}{x}$$

4.
$$f_4 \begin{vmatrix} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (x+y,xy) \end{vmatrix}$$
5. $f_5 \begin{vmatrix} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & x-y^2 \end{vmatrix}$

2.
$$f_2 \mid \begin{bmatrix} 1, +\infty[\longrightarrow \mathbb{R}_+ \\ x \longmapsto x + \frac{1}{x} \end{bmatrix}$$

5.
$$f_5 \mid \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & x-y^2 \end{array}$$

3.
$$f_3 \mid \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (x-y,-2x+2y) \end{array}$$

6.
$$f_6 \mid \begin{array}{ccc} \mathbb{N} & \longrightarrow & \mathbb{Z} \\ n & \longmapsto & \begin{cases} \frac{n}{2} & \text{si } n \text{ est pair} \\ -\frac{n+1}{2} & \text{sinon.} \end{cases}$$

Exercice 3 ($\bigstar \star \mathring{\Rightarrow} \mathring{\Rightarrow} \mathring{\Rightarrow}$) ||obligatoire||Soit $f \in F^E$. Montrer que les propositions suivantes sont équivalentes (penser à un raisonnement circulaire) :

- (i) L'application f est injective.
- (ii) Tout élément de F possède au plus un antécédent par f.
- (iii) Pour tout $y \in F$, l'équation f(x) = y possède au plus une solution.
- (iv) $\forall (x_1, x_2) \in E^2$, $(f(x_1) = f(x_2) \implies x_1 = x_2)$.

Exercice 4 (★★☆☆) Soit $f \in F^E$. Montrer que les propositions suivantes sont obligatoireéquivalentes :

- (i) L'application f est surjective.
- (ii) Tout élément de F a au moins un antécédent par f.
- (iii) Pour tout $y \in F$, l'équation f(x) = y possède au moins une solution.
- (iv) $\forall y \in F, \exists x \in E, y = f(x).$

Exercice 5 (★★☆☆) Soit $f \in F^E$. Montrer que les propositions suivantes sont obligatoireéquivalentes :

- (i) L'application f est bijective.
- (ii) Tout élément de F a un et un seul antécédent par f.
- (iii) Pour tout $y \in F$, l'équation f(x) = y possède une unique solution.
- (iv) $\forall u \in F, \exists ! x \in E, y = f(x).$

Exercice 6 ($\star\star\star\star$) Soit E et F deux ensembles. Montrer qu'il existe une application injective de E dans F si et seulement s'il existe une application surjective de F dans E.

Application réciproque

Exercice 7 ($\bigstar \Leftrightarrow \Leftrightarrow \Leftrightarrow$) Pour chacune des applications f suivantes, donner l'ensemble d'arrivée J tel que f soit bijective. Expliciter ensuite sa réciproque.

1.
$$f \mid \begin{array}{ccc} \mathbb{R} & \longrightarrow & J \\ x & \longmapsto & 1 + e^x \end{array}$$

3.
$$f \mid \mathbb{R}_{+} \longrightarrow J$$
 $x \longmapsto \frac{1}{1+x^{2}}$
4. $f \mid \mathbb{R}_{+} \longrightarrow J$
 $x \longmapsto x(1+x)$

$$\mathbf{2.} \ f \left| \begin{array}{ccc} \mathbb{R}_+ & \longrightarrow & J \\ x & \longmapsto & -\frac{x}{2} - 1 \end{array} \right|$$

4.
$$f \mid \begin{array}{ccc} \mathbb{R}_+ & \longrightarrow & J \\ x & \longmapsto & x(1+x) \end{array}$$

Exercice 8 ($\star\star\star$) Soit E un ensemble, et A, B deux sous-ensembles de E. On considère l'application

$$f \mid \begin{array}{ccc} \mathcal{P}(E) & \longrightarrow & \mathcal{P}(A) \times \mathcal{P}(B) \\ X & \longmapsto & (X \cap A, X \cap B) \end{array}$$

- 1. Montrer que f est injective si et seulement si $A \cup B = A$
- **2.** Montrer que f est surjective si et seulement si $A \cap B = \emptyset$.
- 3. Dans le cas où f est bijective, déterminer son application réciproque.

Composition des applications

Soit $u: E \longrightarrow F$ et $v: F \longrightarrow E$. À quelle condition sur E et F a-t-on Exercice 9 ($\bigstar \Leftrightarrow \Leftrightarrow \Leftrightarrow \Rightarrow$) $u \circ v = v \circ u$?

Exercise 10 ($\bigstar \Leftrightarrow \Leftrightarrow \Leftrightarrow$) Soit $E = F = \mathbb{N}$. Soient f et g deux applications de \mathbb{N} dans \mathbb{N} , telles que:

$$\forall n \in \mathbb{N}, \quad f(n) = 2n$$
 et $\forall n \in \mathbb{N}, \quad g(2n) = n \text{ et } g(2n+1) = 0.$

- 1. f et q sont-elles injectives? surjectives?
- **2.** Calculer $g \circ f$ puis $f \circ g$.
- 3. Conclure.

Fonction indicatrice (ou caractéristique)

Exercice 11 ($\bigstar \star \dot{\Xi} \dot{\Xi}$) Soit E un ensemble, A et B des sous-ensembles de E.

- 1. Rappeler les fonctions caractéristiques de \overline{A} , $A \cap B$, $A \cup B$ en fonction de $\mathbb{1}_A$ et $\mathbb{1}_B$.
- **2.** Retrouver, à l'aide des fonctions indicatrices, que $A \cap B = A \cup B \iff A = B$.

Exercise 12 ($\bigstar \star \Leftrightarrow \Leftrightarrow \Rightarrow$) Soit A_1 , A_2 et A_3 trois parties de E. On pose $A = A_1 \cup A_2 \cup A_3$.

- 1. Montrer que $1 \mathbb{1}_A = (1 \mathbb{1}_{A_1})(1 \mathbb{1}_{A_2})(1 \mathbb{1}_{A_3}).$
- 2. En déduire :

 $\operatorname{Card} A = \operatorname{Card} A_1 + \operatorname{Card} A_2 + \operatorname{Card} A_3 - \operatorname{Card} A_2 \cap A_3 - \operatorname{Card} A_1 \cap A_3 - \operatorname{Card} A_1 \cap A_2$ $+\operatorname{Card} A_1 \cap A_2 \cap A_3$.

Images directes et réciproques d'ensembles

Exercice 13 ($\bigstar \not \simeq \not \simeq \not \simeq$) Soit f la fonction de \mathbb{R} vers \mathbb{R} définie par $f(x) := \cos x$ pour tout x dans \mathbb{R} . Déterminer les ensembles suivants :

1.
$$f(\mathbb{R})$$

2.
$$f([0,\pi])$$

3.
$$f\left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$$

4.
$$f^{-1}(\{0\})$$

$$5. f^{-1}\left(\left\{\frac{\sqrt{3}}{2}\right\}\right)$$

6.
$$f^{-1}([0,1])$$

7.
$$f^{-1}(f(\{0\}))$$

8.
$$f(f^{-1}(\{0\}))$$

9.
$$f^{-1}\left(f\left(\left[0,\frac{\pi}{2}\right]\right)\right)$$

10.
$$f(f^{-1}([0,1]))$$
.

Exercice 14 ($\bigstar \bigstar \Leftrightarrow \Diamond$) [obligatoire] Soit $f: E \longrightarrow F$ une application et soient A et B deux parties de E, C et D deux parties de F.

Montrer que :

1.
$$f(A \cup B) = f(A) \cup f(B)$$
.

2.
$$f(A \cap B) \subset f(A) \cap f(B)$$
.

3.
$$f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$$
.

4.
$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$$
.

5.
$$f(f^{-1}(C)) \subset C$$
.

6.
$$f^{-1}(f(A)) \supset A$$
.

Exercice 15 ($\bigstar \star \Leftrightarrow \Leftrightarrow \Leftrightarrow$) Soit E et F deux ensembles, et f une application de E vers F.

1. Montrer qu'on a
$$\forall A \subseteq E$$
, $A \subseteq f^{-1}(f(A))$.

2. Montrer que
$$f$$
 est injective si et seulement si pour tout $A \subseteq E$, $A = f^{-1}(f(A))$.

3. Montrer qu'on a
$$\forall B \subseteq F$$
, $f(f^{-1}(B)) \subseteq B$.

4. Montrer que
$$f$$
 est surjective si et seulement si pour tout $B \subseteq F$, $B = f(f^{-1}(B))$.

Exercice 16 ($\bigstar \star \star \star \circlearrowleft$) Soit E et F deux ensembles, et f une application de E vers F. On considère les applications :

$$\phi \mid \begin{array}{ccc} \mathcal{P}(E) & \longrightarrow & \mathcal{P}(F) \\ A & \longmapsto & f(A) \end{array}$$

et

$$\psi \mid \begin{array}{ccc} \mathcal{P}(F) & \longrightarrow & \mathcal{P}(E) \\ B & \longmapsto & f^{-1}(B) \end{array}$$

1. Montrer que les assertions suivantes sont équivalentes :

b)
$$\phi$$
 est injective

c)
$$\psi$$
 est surjective

2. Montrer que les assertions suivantes sont équivalentes :

b)
$$\phi$$
 est surjective

c)
$$\psi$$
 est injective

Familles indexées

Exercice 17 ($\bigstar \bigstar \bigstar \bigstar$) Pour tout $h \in \mathbb{R}_+^*$, on pose $J_h =]-h,h[$. Montrer que :

$$\bigcap_{h \in \mathbb{R}_+^*} J_h = \{0\} \qquad \text{et} \qquad \bigcup_{k \in \mathbb{R}_+^*} J_h = \mathbb{R}.$$