T^{ale} spé Maths expertes J. Bérard

2025-2026

Lycée Saint-Augustin

TD 4 Relations

Exercice 1 ($\bigstar \star \mathring{a} \Leftrightarrow \mathring{a}$) Soient E et F deux ensembles et f une application de E vers F. On définit la relation \mathscr{R} sur E en posant :

$$x\mathcal{R}y \iff f(x) = f(y).$$

Montrer que \mathcal{R} est une relation d'équivalence sur E. Décrire les classes d'équivalence de cette relation.

Exercice 2 ($\bigstar \bigstar \mathring{\boxtimes} \mathring{\boxtimes}$) On définit la relation \mathscr{R} sur \mathbb{R} par :

$$x\mathscr{R}y \iff x^2 - y^2 = x - y.$$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Soit x un élément de \mathbb{R} . Déterminer la classe d'équivalence de x.

Exercice 3 ($\star\star\star$) Sur \mathbb{R} , la relation \mathscr{R} définie par

$$x\mathcal{R}y \iff x^3 - y^3 = 3(x - y)$$

est-elle une relation d'équivalence? Dans l'affirmative, pour tout $x \in \mathbb{R}$, déterminer le nombre d'éléments de la classe de x.

Exercice 4 ($\star\star\star\star$) Soit \mathcal{U} une partition de E. Montrer que la relation \mathscr{R} définie par :

$$\forall (x,y) \in E^2, \quad x \mathcal{R} y \iff (\exists A \in \mathcal{U}, (x \in A) \land (y \in A))$$

est une relation d'équivalence dont les classes sont les éléments de \mathcal{U} .