

2025-2026

Lycée Saint-Augustin

Correction du TD 4 Relations

Exercice 1 ($\bigstar \star \mathring{\Box} \mathring{\Box}$) Soient E et F deux ensembles et f une application de E vers F. On définit la relation \mathscr{R} sur E en posant :

$$x\mathcal{R}y \iff f(x) = f(y).$$

Montrer que \mathcal{R} est une relation d'équivalence sur E. Décrire les classes d'équivalence de cette relation.

On définit, pour une application $f: E \to F$, la relation $\mathscr R$ sur E par

$$x\mathcal{R}y \iff f(x) = f(y).$$

Réflexive: f(x) = f(x) pour tout $x \in E$.

Symétrique : $f(x) = f(y) \implies f(y) = f(x)$.

Transitive: f(x) = f(y) et $f(y) = f(z) \implies f(x) = f(z)$.

Ainsi \mathcal{R} est une **relation d'équivalence**. La classe d'équivalence de $x \in E$ est

$$\tilde{x} = \{ y \in E \mid f(y) = f(x) \} = f^{-1}(\{ f(x) \}),$$

c'est-à-dire la fibre (c'est comme cela qu'on appelle l'ensemble des antécédents) de f au-dessus de f(x); les classes forment une partition de E.

Exercice 2 $(\bigstar \bigstar \mathring{\boxtimes} \mathring{\boxtimes})$ On définit la relation \mathscr{R} sur \mathbb{R} par :

$$x\mathscr{R}y \iff x^2 - y^2 = x - y.$$

1. Montrer que $\mathcal R$ est une relation d'équivalence.

Sur \mathbb{R} , on pose $x\mathcal{R}y \iff x^2 - y^2 = x - y$. Alors

$$x^{2} - y^{2} = (x - y)(x + y) \iff (x - y)(x + y - 1) = 0 \iff (x = y) \lor (x + y = 1).$$

Réflexive, symétrique : évident. Transitive : on distingue les cas :

- x = y et $y = z \implies x = z$
- x = y et $y + z = 1 \implies x + z = 1$
- x + y = 1 et $y = z \implies x + z = 1$
- x + y = 1 et $y + z = 1 \implies x = z$.

Donc \mathcal{R} est une relation d'équivalence.

2. Soit x un élément de \mathbb{R} . Déterminer la classe d'équivalence de x.

Les classes sont

$$\tilde{x} = \begin{cases} \{x, 1 - x\} & \text{si } x \neq \frac{1}{2}, \\ \left\{\frac{1}{2}\right\} & \text{si } x = \frac{1}{2}. \end{cases}$$

Exercice 3 ($\star\star\star$) Sur \mathbb{R} , la relation \mathscr{R} définie par

$$x\mathcal{R}y \iff x^3 - y^3 = 3(x - y)$$

est-elle une relation d'équivalence? Dans l'affirmative, pour tout $x \in \mathbb{R}$, déterminer le nombre d'éléments de la classe de x.

Sur \mathbb{R} , $x\mathcal{R}y \iff x^3 - y^3 = 3(x - y)$. On factorise

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2) \implies (x - y)(x^2 + xy + y^2 - 3) = 0,$$

d'où

$$x\mathcal{R}y \iff (x=y) \lor (x^2 + xy + y^2 = 3).$$

Réflexive, symétrique : évident. Pour la **transitivité**, supposons $x \neq y, y \neq z$ et

$$x^{2} + xy + y^{2} = 3,$$
 $y^{2} + yz + z^{2} = 3.$

Alors x et z sont les deux racines du polynôme $t^2 + yt + (y^2 - 3) = 0$, donc

$$x + z = -y, \qquad xz = y^2 - 3.$$

Ainsi

$$x^{2} + xz + z^{2} = (x + z)^{2} - xz = y^{2} - (y^{2} - 3) = 3,$$

d'où $x\mathscr{R}z$. Les cas incluant des égalités se traitent comme dans l'exercice $2:\mathscr{R}$ est une **équivalence**.

Classes. Pour $x \in \mathbb{R}$, y appartient à \tilde{x} si y = x ou si y est solution de

$$y^{2} + xy + (x^{2} - 3) = 0$$
 $(\Delta = 12 - 3x^{2}).$

- Si |x| > 2, $\Delta < 0$: pas d'autre solution réelle, donc $\tilde{x} = \{x\}$.
- Si |x|=2 ou |x|=1, $\Delta=0$ ou bien y=x est déjà racine : \tilde{x} a 2 éléments (par ex. $\tilde{2}=\{2,-1\},$ $\tilde{1}=\{1,-2\}$).
- Si |x| < 2 et $x \neq \pm 1$, $\Delta > 0$ donne deux solutions :

$$y_1 = \frac{-x + \sqrt{12 - x^2}}{2}$$
 et $y_2 = \frac{-x - \sqrt{12 - x^2}}{2}$

distinctes de x. On a $y_1 + y_2 = -x$, $y_1y_2 = x^2 - 3$ donc

$$y_1^2 + y_1 y_2 + y_2^2 = 3,$$

donc $y_1 \mathcal{R} y_2$ et la classe vaut

$$\tilde{x} = \{x, y_1, y_2\}.$$

 $(par ex. \tilde{0} = \{0, \sqrt{3}, -\sqrt{3}\}).$

Exercice 4 ($\star\star\star\star$) Soit \mathcal{U} une partition de E. Montrer que la relation \mathscr{R} définie par :

$$\forall (x,y) \in E^2, \quad x \mathcal{R} y \iff (\exists A \in \mathcal{U}, (x \in A) \land (y \in A))$$

est une relation d'équivalence dont les classes sont les éléments de \mathcal{U} .

Soit \mathcal{U} une partition de E. On définit $x\mathcal{R}y \iff \exists A \in \mathcal{U}, (x \in A) \land (y \in A)$.

Réflexive : chaque x appartient à un (unique) bloc $A \in \mathcal{U}$.

Symétrique : même bloc A.

Transitive: si $x,y \in A$ et $y,z \in B$ avec $A,B \in \mathcal{U}$, alors $y \in A \cap B$; or deux blocs d'une partition sont disjoints ou égaux : donc A = B et $x,z \in A$.

Ainsi \mathcal{R} est une **équivalence**.

Classes. Pour $x \in \mathbb{R}$, \mathcal{U} est une partition de E donc il existe un bloc $A \in \mathcal{U}$ tel que $x \in A$. De même, pour tout $y \in \tilde{x}$, il existe un bloc $B \in \mathcal{U}$ tel que $y \in B$, et par ailleurs, $x \mathcal{R} y$ donc $y \in A$. Ainsi, $y \in A \cap B$. Or, \mathcal{U} est une partition de E, donc $A \cap B \neq \emptyset \implies A = B$. Ainsi:

$$\forall y \in \tilde{x}, y \in A.$$

Par ailleurs, pour tout $y \in A$, $x \mathcal{R} y$ car $(x \in A) \land (y \in A)$. Ainsi :

$$\forall y \in A, y \in \tilde{x}.$$

On a donc $\tilde{x} = A$, ce qui signifie que chaque classe d'équivalence de \mathscr{R} est un bloc de \mathcal{U} , et comme les classes d'équivalence forment une partition de E, on conclut :

$$E/\mathscr{R}=\mathcal{U}.$$

et ses classes sont exactement les blocs de la partition \mathcal{U} .