T^{ale} spé Maths expertes J. Bérard

2025-2026

Lycée Saint-Augustin

TD 5 Structures algébriques

Espaces vectoriels – Généralités

Exercice 1 (★☆☆☆) Les ensembles E suivants, munis de leurs opérations usuelles, sont-ils des \mathbb{R} -espaces vectoriels?

1.
$$\{(x,y,z) \in \mathbb{R}^3 \mid (x+y+z=0) \land (x-3y=0)\};$$
 4. $\{(x,x+y,x+y+z) \in \mathbb{R}^3 \mid (x,y,z) \in \mathbb{R}^3\};$

4.
$$\{(x, x+y, x+y+z) \in \mathbb{R}^3 \mid (x,y,z) \in \mathbb{R}^3\};$$

2.
$$\{(x,y,z) \in \mathbb{R}^3 \mid -x+3y+z=0\}$$
;

5.
$$\{f: \mathbb{R} \longrightarrow \mathbb{R} \text{ monotone}\};$$

3.
$$\{(x,y,z) \in \mathbb{R}^3 \mid xy \ge 0\}$$
;

6.
$$\{(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^\mathbb{N} \text{ born\'ee}\}.$$

Exercice 2 (\bigstar $\stackrel{\wedge}{\searrow} \stackrel{\wedge}{\searrow} \stackrel{\wedge}{\searrow})$ On définit les sous-ensembles suivants de \mathbb{R}^3 :

$$E = \{(x, y, z) \in \mathbb{R}^3, 2x + y - z = 0\} \quad ; \quad F = \{(x, x, -x) \in \mathbb{R}^3, x \in \mathbb{R}\}.$$

Montrer que E et F sont des sous-espaces vectoriels de \mathbb{R}^3 et déterminer $E \cap F$.

Exercice 3 ($\bigstar \star \Leftrightarrow \Leftrightarrow \Leftrightarrow$) Soient F et G deux sous-espaces vectoriels de E un K-espace vectoriel. Montrer que $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset F$.

Applications linéaires

Exercice 4 (★☆☆☆) Montrer que les applications suivantes sont linéaires :

1.
$$f \mid \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ (x,y,z) & \longmapsto & (x-y,\,y-z) \end{array}$$

3.
$$f \mid \mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}^3$$
 $(u_n) \longmapsto (u_0, u_1, u_2)$

1.
$$f \mid \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

 $(x,y,z) \longmapsto (x-y, y-z)$
2. $f \mid \mathbb{R}^2 \longrightarrow \mathbb{R}^3$
 $(x,y) \longmapsto (4x+y, x-y, 2x+3y)$

4.
$$f \mid \begin{array}{ccc} \mathbb{R}[X] & \longrightarrow & \mathbb{R}[X] \\ P & \longmapsto & XP' - P \end{array}$$

Exercice 5 ($\star\star\star$) On munit \mathbb{R}^3 de sa structure de \mathbb{R} -espace vectoriel usuelle. Montrer que l'application

$$f \left| \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x, y, z) & \longmapsto & (x + 2y, 4x - y, \ -2x + 2y + 3z) \end{array} \right|$$

est un automorphisme (i.e. linéaire et bijectif) de \mathbb{R}^3 et déterminer sa réciproque.

Exercice 6 ($\star\star\star\star$) Soit Δ l'application de $\mathbb{R}[X]$ vers $\mathbb{R}[X]$ définie par :

$$\forall P \in \mathbb{R}[X], \quad \Delta P(X) = P(X+1) - P(X).$$

- 1. Préciser le degré de $\Delta(P)$ en fonction du degré de P.
- **2.** Montrer que Δ est linéaire et déterminer $Ker(\Delta)$.
- 3. Montrer que Δ induit un isomorphisme d'un sous-espace vectoriel F de $\mathbb{R}[X]$ à déterminer sur $\mathbb{R}[X]$.