

2025 - 2025

Lycée Saint-Augustin

TD 6 **Récurrence**

Exercice 1 (★☆☆☆)

1. Démontrer par récurrence que, pour tout entier naturel $n \ge 1$:

$$\sum_{k=1}^{n} (2k - 1) = n^2.$$

2. On prend un cube et on place en dessous de lui trois cubes ; on place ensuite cinq cubes en dessous de ces trois cubes, etc.

Combien utilise-t-on de cubes si l'on a dressé 100 rangées de cubes?

Exercice 2 (\bigstar \darkards\darkards\darkards) Soit (u_n) la suite définie sur \mathbb{N} par :

$$\begin{cases} u_0 = 1\\ u_{n+1} = 2u_n - 3 \end{cases}$$

Montrer par récurrence que pour tout entier naturel $n: u_n = 3 - 2^{n+1}$.

Exercice 3 ($\bigstar \stackrel{\wedge}{\bowtie} \stackrel{\wedge}{\bowtie} \stackrel{\wedge}{\bowtie}$) Soit la suite (u_n) définie sur \mathbb{N} par :

$$\begin{cases} u_0 = 14 \\ u_{n+1} = 2u_n - 5 \end{cases}$$

Montrer par récurrence que :

$$\forall n \in \mathbb{N}, u_n = 9 \times 2^n + 5.$$

Exercice 4 (\bigstar \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\) La suite (u_n) est définie par : $u_1 = 0$ et $u_{n+1} = \frac{1}{2 - u_n}$.

- **1.** Calculer u_2, u_3, u_4 .
- **2.** Que peut-on conjecturer sur l'expression de u_n en fonction de n?
- 3. Démontrer cette conjecture par récurrence et donner la valeur exacte de u_{2024} .

Exercice 5 ($\bigstar \star \circlearrowleft \circlearrowleft$) Démontrer par récurrence que, pour tout entier naturel $n \geqslant 1$:

$$\sum_{k=1}^{n} k \times k! = (n+1)! - 1.$$

Exercice 6 ($\bigstar \bigstar ئ ئ ئ$) Démontrer par récurrence que, pour tout entier naturel $n \geqslant 1$:

$$n! \geqslant 2^{n-1}.$$

Exercice 7 ($\bigstar \bigstar \overleftrightarrow{x}$) Soit la suite (u_n) définie pour $n \geqslant 1$ par : $u_n = \sum_{k=1}^n k(k+1)$.

- 1. Déterminer u_1, u_2, u_3 puis déterminer une relation entre u_{n+1} et u_n .
- 2. Démontrer par récurrence que :

$$\forall n \in \mathbb{N}^*, u_n = \frac{n(n+1)(n+2)}{3}.$$

Exercice 8 (★★☆☆) Somme des cubes

On pose, pour $n \ge 1$, $S_n = \sum_{k=1}^n k^3$.

- 1. Calculer S_1 , S_2 , S_3 et S_4 . Exprimer S_{n+1} en fonction de S_n .
- 2. Démontrer par récurrence que :

$$\forall n \geqslant 1, \, S_n = \frac{n^2(n+1)^2}{4}.$$

Exercice 9 ($\bigstar \bigstar \mathring{\boxtimes}$) Soit la suite (v_n) définie sur \mathbb{N} par :

$$\begin{cases} v_0 = 10 \\ v_{n+1} = \sqrt{v_n + 6} \end{cases}$$

Montrer par récurrence que :

$$\forall n \in \mathbb{N}, 3 \leqslant v_n \leqslant 10.$$

Exercice 10 ($\bigstar \bigstar \overleftrightarrow{\bowtie} \overleftrightarrow{\bowtie}$) La suite (u_n) est définie sur \mathbb{N} par :

$$\begin{cases} u_0 \in]0; 1[\\ u_{n+1} = u_n(2 - u_n) \end{cases}$$

- 1. Montrer que la fonction f définie par f(x) = x(2-x) est croissante sur [0;1].
- 2. Démontrer par récurrence que :

$$\forall n \in \mathbb{N}, 0 < u_n < 1.$$

3. En déduire que la suite (u_n) est croissante.

Exercice 11 ($\star\star\star$) Soit un réel $a \in \left]0, \frac{\pi}{2}\right[$.

On considère la suite (u_n) définie sur \mathbb{N} par :

$$\begin{cases} u_0 = 2\cos a \\ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{2 + u_n} \end{cases}$$

2

- 1. Calculer u_1 et u_2 . Conjecturer une expression de u_n en fonction de a et de n.
- 2. Démontrer par récurrence cette conjecture.

Exercice 12 (★★★☆) Inégalités de Bernoulli

Soit $a \in \mathbb{R}_+$.

1. Montrer par récurrence

$$\forall n \in \mathbb{N}, (1+a)^n \geqslant 1 + na$$
 (Inégalité de Bernoulli d'ordre 1).

2. Prouver l'inégalité

$$\forall\,n\in\mathbb{N}^*,\quad (1+a)^n\geqslant 1+na+\frac{n(n-1)}{2}a^2\quad (\textit{In\'egalit\'e de Bernoulli d'ordre 2}).$$

3. Application : On considère la suite (u_n) définie sur \mathbb{N}^* par :

$$u_n = \frac{3n}{3^n}.$$

Justifier, pour tout $n \in \mathbb{N}^*$, la double inégalité suivante :

$$0 < u_n < \frac{3n}{2n^2 + 1}.$$

Exercice 13 ($\star\star\star$ \$\(\delta\) Nombres de Fermat

Un nombre Pierre de Fermat 1 , noté F_n , est défini par :

$$\forall n \in \mathbb{N}, \quad F_n = 2^{2^n} + 1.$$

1. Justifier que

$$\forall n \in \mathbb{N}, \quad F_{n+1} = (F_n - 1)^2 + 1.$$

2. Montrer que

$$\forall n \in \mathbb{N}^*, \quad F_n = 2 + \prod_{k=0}^{n-1} F_k.$$

^{1.} Mathématicien français du XVII^e siècle.